Phylogenomic insights into the reticulate evolution of Camellia sect. Paracamellia Sealy (Theaceae)

被引:13
作者
Qin, Sheng-Yuan [1 ,2 ,3 ,4 ]
Chen, Kai [1 ,2 ]
Zhang, Wen-Ju [5 ]
Xiang, Xiao-Guo [1 ,2 ]
Zuo, Zheng-Yu [3 ,4 ]
Guo, Cen [3 ]
Zhao, Yao [1 ,2 ]
Li, Lin-Feng [5 ]
Wang, Yu-Guo [5 ]
Song, Zhi-Ping [5 ]
Yang, Ji [5 ]
Yang, Xiao-Qiang [1 ,2 ]
Zhang, Jian [1 ,2 ]
Jin, Wei-Tao [1 ,2 ]
Wen, Qiang [6 ]
Zhao, Song-Zi [6 ]
Chen, Jia-Kuan [1 ,2 ,5 ]
Li, De-Zhu [3 ]
Rong, Jun [1 ,2 ]
机构
[1] Nanchang Univ, Inst Life Sci, Ctr Watershed Ecol, Jiangxi Prov Key Lab Watershed Ecosyst Change & Bi, Nanchang 330031, Peoples R China
[2] Nanchang Univ, Sch Life Sci, Nanchang 330031, Peoples R China
[3] Chinese Acad Sci, Kunming Inst Bot, Germplasm Bank Wild Species, Kunming 650201, Peoples R China
[4] Univ Chinese Acad Sci, Kunming Coll Life Sci, Kunming 650201, Peoples R China
[5] Fudan Univ, Inst Biodivers Sci, Key Lab Biodivers Sci & Ecol Engn, Minist Educ, Shanghai 200438, Peoples R China
[6] Jiangxi Acad Forestry, Jiangxi Prov Key Lab Camellia Germplasm Conservat, Nanchang 330013, Peoples R China
基金
中国国家自然科学基金;
关键词
Camellia oleifera; hybridization; phylogenomics; plastome; polyploidization; transcriptome; EVERGREEN BROADLEAVED FORESTS; HISTORY; DYNAMICS; OLEIFERA; CHINA; PHYLOGEOGRAPHY; ALIGNMENT; TREE;
D O I
10.1111/jse.12948
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Polyploids are common in Camellia sect. Paracamellia, which contain many important oil crop species. However, their complex evolutionary history is largely unclear. In this study, 22 transcriptomes and 19 plastomes of related species of Camellia were sequenced and assembled, providing the most completed taxa sampling of Camellia sect. Oleifera and C. sect. Paracamellia. Phylogenetic trees were reconstructed with predicted single-copy nuclear genes and plastomes. Phylogenetic trees with nuclear genes demonstrated that C. sect. Oleifera should be merged into C. sect. Paracamellia. Cytonuclear discordance and network analyses suggested hybridizations among polyploid species and relatives. The divergence of major clades in C. sect. Paracamellia was dated to be during the middle to late Miocene from the ancestral Lingnan region, and a rapid diversification during the Quaternary was found, probably through hybridization and polyploidization. The tetraploid Camellia meiocarpa Hu may have originated from hybridization between closely related diploid species. The hexaploid Camellia oleifera C. Abel probably originated from hybridization between closely related diploid and tetraploid (e.g., C. meiocarpa) species. The octoploid Camellia vietnamensis T. C. Huang ex Hu could have originated from hybridization between hexaploid C. oleifera and the closely related diploid species. Hybridization and polyploidization played an important role in generating the rich variation of important fruit traits, especially increased fruit size in polyploid species.
引用
收藏
页码:38 / 54
页数:17
相关论文
共 70 条
[1]   Hybridization and speciation [J].
Abbott, R. ;
Albach, D. ;
Ansell, S. ;
Arntzen, J. W. ;
Baird, S. J. E. ;
Bierne, N. ;
Boughman, Janette W. ;
Brelsford, A. ;
Buerkle, C. A. ;
Buggs, R. ;
Butlin, R. K. ;
Dieckmann, U. ;
Eroukhmanoff, F. ;
Grill, A. ;
Cahan, S. H. ;
Hermansen, J. S. ;
Hewitt, G. ;
Hudson, A. G. ;
Jiggins, C. ;
Jones, J. ;
Keller, B. ;
Marczewski, T. ;
Mallet, J. ;
Martinez-Rodriguez, P. ;
Moest, M. ;
Mullen, S. ;
Nichols, R. ;
Nolte, A. W. ;
Parisod, C. ;
Pfennig, K. ;
Rice, A. M. ;
Ritchie, M. G. ;
Seifert, B. ;
Smadja, C. M. ;
Stelkens, R. ;
Szymura, J. M. ;
Vainola, R. ;
Wolf, J. B. W. ;
Zinner, D. .
JOURNAL OF EVOLUTIONARY BIOLOGY, 2013, 26 (02) :229-246
[2]  
An Z, 2014, DEV PALEOENVIRON RES, V16, P1, DOI 10.1007/978-94-007-7817-7
[3]   HYBRIDSPADES: an algorithm for hybrid assembly of short and long reads [J].
Antipov, Dmitry ;
Korobeynikov, Anton ;
McLean, Jeffrey S. ;
Pevzner, Pavel A. .
BIOINFORMATICS, 2016, 32 (07) :1009-1015
[4]   Late Miocene-Pliocene Asian monsoon intensification linked to Antarctic ice-sheet growth [J].
Ao, Hong ;
Roberts, Andrew P. ;
Dekkers, Mark J. ;
Liu, Xiaodong ;
Rohling, Eelco J. ;
Shi, Zhengguo ;
An, Zhisheng ;
Zhao, Xiang .
EARTH AND PLANETARY SCIENCE LETTERS, 2016, 444 :75-87
[5]  
Bartholomew B., 2007, Flora of China, P366
[6]   BEAST 2.5: An advanced software platform for Bayesian evolutionary analysis [J].
Bouckaert, Remco ;
Vaughan, Timothy G. ;
Barido-Sottani, Joelle ;
Duchene, Sebastian ;
Fourment, Mathieu ;
Gavryushkina, Alexandra ;
Heled, Joseph ;
Jones, Graham ;
Kuehnert, Denise ;
De Maio, Nicola ;
Matschiner, Michael ;
Mendes, Fabio K. ;
Mueller, Nicola F. ;
Ogilvie, Huw A. ;
du Plessis, Louis ;
Popinga, Alex ;
Rambaut, Andrew ;
Rasmussen, David ;
Siveroni, Igor ;
Suchard, Marc A. ;
Wu, Chieh-Hsi ;
Xie, Dong ;
Zhang, Chi ;
Stadler, Tanja ;
Drummond, Alexei J. .
PLOS COMPUTATIONAL BIOLOGY, 2019, 15 (04)
[7]   Mapping single molecule sequencing reads using basic local alignment with successive refinement (BLASR): application and theory [J].
Chaisson, Mark J. ;
Tesler, Glenn .
BMC BIOINFORMATICS, 2012, 13
[8]  
Chang H.D., 1998, Flora Reipublicae Popularis Sinicae, P1
[9]   Phylogeny and biogeography of East Asian evergreen oaks (Quercus section Cyclobalanopsis; Fagaceae): Insights into the Cenozoic history of evergreen broad-leaved forests in subtropical Asia [J].
Deng, Min ;
Jiang, Xiao-Long ;
Hipp, Andrew L. ;
Manos, Paul S. ;
Hahn, Marlene .
MOLECULAR PHYLOGENETICS AND EVOLUTION, 2018, 119 :170-181
[10]   NOVOPlasty: de novo assembly of organelle genomes from whole genome data [J].
Dierckxsens, Nicolas ;
Mardulyn, Patrick ;
Smits, Guillaume .
NUCLEIC ACIDS RESEARCH, 2017, 45 (04)