AN EXPONENTIAL BOUND ON THE NUMBER OF NON-ISOTOPIC COMMUTATIVE SEMIFIELDS

被引:4
|
作者
Goolog, F. A. R. U. K. [1 ]
Kolsch, L. U. K. A. S. [2 ,3 ]
机构
[1] Charles Univ Prague, Fac Math & Phys, PRAGUE, Czech Republic
[2] Univ Rostock, Rostock, Germany
[3] Univ S Florida, Dept Math & Stat, Tampa, FL USA
基金
美国国家科学基金会;
关键词
PERFECT; ALGEBRAS; PLANES; FAMILY; POWER;
D O I
10.1090/tran/8785
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that the number of non-isotopic commutative semifields of odd order p(n) is exponential in n when n = 4t and t is not a power of 2. We introduce a new family of commutative semifields and a method for proving isotopy results on commutative semifields that we use to deduce the aforementioned bound. The previous best bound on the number of non-isotopic commutative semifields of odd order was quadratic in n and given by Zhou and Pott [Adv. Math. 234 (2013), pp. 43-60]. Similar bounds in the case of even order were given in Kantor [J. Algebra 270 (2003), pp. 96-114] and Kantor and Williams [Trans. Amer. Math. Soc. 356 (2004), pp. 895-938].
引用
收藏
页码:1683 / 1716
页数:34
相关论文
共 1 条