Detection of cerebral aneurysms using artificial intelligence: a systematic review and meta-analysis

被引:32
作者
Din, Munaib [1 ]
Agarwal, Siddharth [1 ]
Grzeda, Mariusz [1 ]
Wood, David A. [1 ]
Modat, Marc [1 ]
Booth, Thomas C. [1 ,2 ]
机构
[1] Kings Coll London, Sch Biomed Engn & Imaging Sci, London, England
[2] Kings Coll Hosp NHS Fdn Trust, Dept Neuroradiol, London, England
基金
英国惠康基金;
关键词
Aneurysm; Angiography; Brain; CT Angiography; Magnetic Resonance Angiography; artificial intelligence; deep learning; machine learning; COMPUTER-AIDED DIAGNOSIS; UNRUPTURED INTRACRANIAL ANEURYSMS; MR-ANGIOGRAPHY; ASSISTED DETECTION; ACCURACY; AGE; VALIDATION; FRAMEWORK; TIME; SEX;
D O I
10.1136/jnis-2022-019456
中图分类号
R445 [影像诊断学];
学科分类号
100207 ;
摘要
BackgroundSubarachnoid hemorrhage from cerebral aneurysm rupture is a major cause of morbidity and mortality. Early aneurysm identification, aided by automated systems, may improve patient outcomes. Therefore, a systematic review and meta-analysis of the diagnostic accuracy of artificial intelligence (AI) algorithms in detecting cerebral aneurysms using CT, MRI or DSA was performed. MethodsMEDLINE, Embase, Cochrane Library and Web of Science were searched until August 2021. Eligibility criteria included studies using fully automated algorithms to detect cerebral aneurysms using MRI, CT or DSA. Following Preferred Reporting Items for Systematic Reviews and Meta-Analysis: Diagnostic Test Accuracy (PRISMA-DTA), articles were assessed using Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2). Meta-analysis included a bivariate random-effect model to determine pooled sensitivity, specificity, and area under the receiver operator characteristic curve (ROC-AUC). PROSPERO: CRD42021278454. Results43 studies were included, and 41/43 (95%) were retrospective. 34/43 (79%) used AI as a standalone tool, while 9/43 (21%) used AI assisting a reader. 23/43 (53%) used deep learning. Most studies had high bias risk and applicability concerns, limiting conclusions. Six studies in the standalone AI meta-analysis gave (pooled) 91.2% (95% CI 82.2% to 95.8%) sensitivity; 16.5% (95% CI 9.4% to 27.1%) false-positive rate (1-specificity); 0.936 ROC-AUC. Five reader-assistive AI studies gave (pooled) 90.3% (95% CI 88.0% - 92.2%) sensitivity; 7.9% (95% CI 3.5% to 16.8%) false-positive rate; 0.910 ROC-AUC. ConclusionAI has the potential to support clinicians in detecting cerebral aneurysms. Interpretation is limited due to high risk of bias and poor generalizability. Multicenter, prospective studies are required to assess AI in clinical practice.
引用
收藏
页码:262 / +
页数:12
相关论文
共 80 条
[61]   Fully automated detection and segmentation of intracranial aneurysms in subarachnoid hemorrhage on CTA using deep learning [J].
Shahzad, Rahil ;
Pennig, Lenhard ;
Goertz, Lukas ;
Thiele, Frank ;
Kabbasch, Christoph ;
Schlamann, Marc ;
Krischek, Boris ;
Maintz, David ;
Perkuhn, Michael ;
Borggrefe, Jan .
SCIENTIFIC REPORTS, 2020, 10 (01)
[62]   Artificial Intelligence in the Management of Intracranial Aneurysms: Current Status and Future Perspectives [J].
Shi, Z. ;
Hu, B. ;
Schoepf, U. J. ;
Savage, R. H. ;
Dargis, D. M. ;
Pan, C. W. ;
Li, X. L. ;
Ni, Q. Q. ;
Lu, G. M. ;
Zhang, L. J. .
AMERICAN JOURNAL OF NEURORADIOLOGY, 2020, 41 (03) :373-379
[63]   A clinically applicable deep-learning model for detecting intracranial aneurysm in computed tomography angiography images [J].
Shi, Zhao ;
Miao, Chongchang ;
Schoepf, U. Joseph ;
Savage, Rock H. ;
Dargis, Danielle M. ;
Pan, Chengwei ;
Chai, Xue ;
Li, Xiu Li ;
Xia, Shuang ;
Zhang, Xin ;
Gu, Yan ;
Zhang, Yonggang ;
Hu, Bin ;
Xu, Wenda ;
Zhou, Changsheng ;
Luo, Song ;
Wang, Hao ;
Mao, Li ;
Liang, Kongming ;
Wen, Lili ;
Zhou, Longjiang ;
Yu, Yizhou ;
Lu, Guang Ming ;
Zhang, Long Jiang .
NATURE COMMUNICATIONS, 2020, 11 (01)
[64]   Deep Learning-Based Detection of Intracranial Aneurysms in 3D TOF-MRA [J].
Sichtermann, T. ;
Faron, A. ;
Sijben, R. ;
Teichert, N. ;
Freiherr, J. ;
Wiesmann, M. .
AMERICAN JOURNAL OF NEURORADIOLOGY, 2019, 40 (01) :25-32
[65]   Deep Learning?Based Software Improves Clinicians? Detection Sensitivity of Aneurysms on Brain TOF-MRA [J].
Sohn, B. ;
Park, K-Y ;
Choi, J. ;
Koo, J. H. ;
Han, K. ;
Joo, B. ;
Won, S. Y. ;
Cha, J. ;
Choi, H. S. ;
Lee, S-K .
AMERICAN JOURNAL OF NEURORADIOLOGY, 2021, 42 (10) :1769-1775
[66]   Convolutional Neural Networks for the Detection and Measurement of Cerebral Aneurysms on Magnetic Resonance Angiography [J].
Stember, Joseph N. ;
Chang, Peter ;
Stember, Danielle M. ;
Liu, Michael ;
Grinband, Jack ;
Filippi, Christopher G. ;
Meyers, Philip ;
Jambawalikar, Sachin .
JOURNAL OF DIGITAL IMAGING, 2019, 32 (05) :808-815
[67]   Computer-Aided Diagnosis Improves Detection of Small Intracranial Aneurysms on MRA in a Clinical Setting [J].
Stepan-Buksakowska, I. L. ;
Accurso, J. M. ;
Diehn, F. E. ;
Huston, J. ;
Kaufmann, T. J. ;
Luetmer, P. H. ;
Wood, C. P. ;
Yang, X. ;
Blezek, D. J. ;
Carter, R. ;
Hagen, C. ;
Horinek, D. ;
Hejcl, A. ;
Rocek, M. ;
Erickson, B. J. .
AMERICAN JOURNAL OF NEURORADIOLOGY, 2014, 35 (10) :1897-1902
[68]  
The Royal College of Radiologists, 2020, CLIN RAD WORKF CENS
[69]   Comparing methods of detecting and segmenting unruptured intracranial aneurysms on TOF-MRAS: The ADAM challenge [J].
Timmins, Kimberley M. ;
van der Schaaf, Irene C. ;
Bennink, Edwin ;
Ruigrok, Ynte M. ;
An, Xingle ;
Baumgartner, Michael ;
Bourdon, Pascal ;
De Feo, Riccardo ;
Di Noto, Tommaso ;
Dubost, Florian ;
Fava-Sanches, Augusto ;
Feng, Xue ;
Giroud, Corentin ;
Hu, Minghui ;
Jaeger, Paul F. ;
Kaiponen, Juhana ;
Klimont, Micha ;
Li, Yuexiang ;
Li, Hongwei ;
Lin, Yi ;
Loehr, Timo ;
Ma, Jun ;
Maier-Hein, Klaus H. ;
Marie, Guillaume ;
Menze, Bjoern ;
Richiardi, Jonas ;
Rjiba, Saifeddine ;
Shah, Dhaval ;
Shit, Suprosanna ;
Tohka, Jussi ;
Urruty, Thierry ;
Walinska, Urszula ;
Yang, Xiaoping ;
Yang, Yunqiao ;
Yin, Yin ;
Velthuis, Birgitta K. ;
Kuijf, Hugo J. .
NEUROIMAGE, 2021, 238
[70]   Deep Learning for MR Angiography: Automated Detection of Cerebral Aneurysms [J].
Ueda, Daiju ;
Yamamoto, Akira ;
Nishimori, Masataka ;
Shimono, Taro ;
Doishita, Satoshi ;
Shimazaki, Akitoshi ;
Katayama, Yutaka ;
Fukumoto, Shinya ;
Choppin, Antoine ;
Shimahara, Yuki ;
Miki, Yukio .
RADIOLOGY, 2019, 290 (01) :187-194