An experimental study on gas-liquid two-phase countercurrent flow limitations of vertical pipes

被引:4
|
作者
Ma, Youfu [1 ]
Zeng, Shanshan [1 ]
Shao, Jie [1 ]
Zhou, Tuo [2 ]
Lyu, Junfu [2 ]
Li, Jingfen [3 ]
Lu, Peng [3 ]
机构
[1] Univ Shanghai Sci & Technol, Sch Energy & Power Engn, Shanghai Key Lab Multiphase Flow & Heat Transfer P, Shanghai 200093, Peoples R China
[2] Tsinghua Univ, Dept Energy & Power Engn, Key Lab Thermal Sci & Power Engn, Minist Educ, Beijing 100084, Peoples R China
[3] Shanghai Marine Diesel Engine Res Inst, Shanghai 201108, Peoples R China
关键词
Gas-liquid flow; CCFL; Vertical pipe; Prediction model; Correlation; AIR-WATER; DUCTS;
D O I
10.1016/j.expthermflusci.2022.110789
中图分类号
O414.1 [热力学];
学科分类号
摘要
The gas-liquid two-phase countercurrent flow limitation (CCFL) of vertical pipes is an important subject of concern in various industries. Predicting the CCFL of vertical pipes, i.e. the flow rate relationship between the gas and liquid phases under CCFL conditions, has not yet been clearly determined on effects of the structural pa-rameters of the pipe. In this study, a visualization experiment on the CCFL of vertical pipes was performed by using air and water as the two phases. The effects of pipe diameter and pipe length were tested in the ranges of 25-100 mm and 0.50-2.0 m, respectively. Based on the experimental result, the flow behaviors of the CCFL in vertical pipes were analyzed, and four existing CCFL correlation models were examined in their capabilities to correlate the effects of pipe diameter and pipe length. The result shows that the flow patterns in vertical pipes are essentially annular flows and annular-mist flows under CCFL conditions, and the flow behaviors on gas-liquid interface present different features as the pipe differed in diameters. Examination of the available CCFL models indicates that none of them has reached a satisfactory correlation on the effects of pipe diameter and pipe length. Consequently, based on a reasonable fluid mechanics analysis, a novel CCFL correlation model that can correlate the effects of pipe diameter and pipe length was advanced. This model provides a reasonable and accurate prediction of the CCFL of vertical pipes when the pipe varies in structural parameters, which is of great sig-nificance to the safe and efficient operation of the related equipment in nuclear power generation, natural gas extraction and chemical industries.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Experimental research of reciprocating oscillatory gas-liquid two-phase flow
    Zhu Hairong
    Duan Junfa
    Cui Haiting
    Liu Qinggang
    Yu Xinqi
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2019, 140 : 931 - 939
  • [42] Experimental study and numerical model of gas-liquid two-phase flow in aeration tank
    Cheng, Wen
    Song, Ce
    Zhou, Xiao-De
    Shuili Xuebao/Journal of Hydraulic Engineering, 2001, (12):
  • [43] Experimental study on leakage characteristics of gas-liquid two-phase flow in a horizontal pipe
    Meng, Jia
    Liang, Fachun
    He, Zhennan
    Zhao, Jingwen
    PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, 2024, 184 : 881 - 896
  • [44] Experimental Study of gas-liquid two-phase flow affected by wall surface wettability
    Takamasa, T.
    Hazuku, T.
    Hibiki, T.
    INTERNATIONAL JOURNAL OF HEAT AND FLUID FLOW, 2008, 29 (06) : 1593 - 1602
  • [45] The instability of void fraction waves in vertical gas-liquid two-phase flow
    Sun, Baojiang
    Yan, Dachun
    Zhang, Zhen
    Communications in Nonlinear Science and Numerical Simulation, 1999, 4 (03): : 181 - 186
  • [46] Theoretical modelling of gas-liquid two-phase flow in a vertical and straight pipe
    Hatta, N
    Omodaka, M
    Fujimoto, H
    STEEL RESEARCH, 1998, 69 (03): : 92 - 101
  • [47] Slug void fraction in vertical downward gas-liquid two-phase flow
    Saidj, Faiza
    Arabi, Abderraouf
    Bouyahiaoui, Hiba
    Azzi, Abdelwahid
    Hasan, Abbas H.
    PHYSICS OF FLUIDS, 2025, 37 (01)
  • [48] Numerical Simulation and Experimental Study of Gas-liquid Two-phase Flow in a Centrifugal Pump
    Su, Xiaobin
    Xu, Qiang
    Yang, Chenyu
    Dai, Xiaoyu
    Guo, Liejin
    Kung Cheng Je Wu Li Hsueh Pao/Journal of Engineering Thermophysics, 2024, 45 (08): : 2396 - 2402
  • [49] FLOW CHARACTERISTICS OF SLUG FLOW - STUDIES ON TWO-PHASE GAS-LIQUID FLOW IN VERTICAL PIPES. (4TH REPORT).
    Hatakeyama, Nobuo
    Noda, Karoku
    Nihon Kogyokaishi, 1987, 103 (1197): : 785 - 791
  • [50] Evolution of the structure of a gas-liquid two-phase flow in a large vertical pipe
    Prasser, Horst-Michael
    Beyer, Matthias
    Carl, Helmar
    Gregor, Sabine
    Lucas, Dirk
    Pietruske, Heiko
    Schuetz, Peter
    Weiss, Frank-Peter
    NUCLEAR ENGINEERING AND DESIGN, 2007, 237 (15-17) : 1848 - 1861