Runge-Kutta pairs of orders 8(7) with extended stability regions for addressing linear inhomogeneous systems

被引:0
作者
Busygin, Sergey [1 ]
Fedorov, Ruslan [1 ]
Karpukhina, Tamara [1 ]
Kovalnogov, Vladislav N. [1 ]
Simos, Theodore E. [1 ,2 ,3 ,4 ]
Tsitouras, Charalampos [5 ]
机构
[1] Ulyanovsk State Tech Univ, Lab Interdisciplinary Problems Clean Energy Prod, Ulyanovsk, Russia
[2] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung, Taiwan
[3] Neijiang Normal Univ, Data Recovery Key Lab Sichun Prov, Neijiang, Peoples R China
[4] Democritus Univ Thrace, Dept Civil Engn, Sect Math, Xanthi, Greece
[5] Natl & Kapodistrian Univ Athens, Gen Dept, Euripus Campus, Athens, Greece
关键词
differential evolution; heat transfer; initial value problem; linear inhomogeneous; numerical solution; plate movement; vibrator; EXPLICIT 2-STEP METHODS; EVOLUTIONARY GENERATION; INTEGRATION;
D O I
10.1002/mma.8750
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The non-stiff Initial Value Problem is a wider subject classified in Mathematics. Here, we consider an interesting subclass. Namely, the Linear Inhomogeneous system that shares constant coefficients. Runge-Kutta pairs of high orders are chosen in order to achieve stringent accuracies when solving these systems numerically. It is theoretically interesting to equip these methods with large stability intervals for addressing the problems at hand. Thus, at first, we present an explicit algorithm for deriving the coefficients of such pairs of orders eight and seven. Then we adjust this in an optimization precess for extending the stability region and simultaneously keep the principal truncation error as low as possible. The resulting pair outperforms other standard pairs in a series of relevant problems.
引用
收藏
页码:4212 / 4224
页数:13
相关论文
共 40 条
[1]  
[Anonymous], MATLAB VERSION R2019
[2]  
[Anonymous], 2017, Mathematica, Version 11.1
[3]   Rksuite_90: Fortran 90 software for ordinary differential equation initial-value problems [J].
Brankin, RW ;
Gladwell, I .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 1997, 23 (03) :402-415
[4]  
BRANKIN RW, 1994, ANNALS OF NUMERICAL MATHEMATICS, VOL I, NOS 1-4 (1994), P363
[5]  
Butcher J. C., 1964, Journal of the Australian Mathematical Society, V4, P179, DOI [10.1017/S1446788700023387, DOI 10.1017/S1446788700023387]
[6]  
Butcher J. C., 2016, Printed Electronics, DOI DOI 10.1002/9781119121534
[7]  
Butcher J.C., 1987, The Numerical Analysis of ODEs: Runge-Kutta and General Linear Methods
[8]   IMPLICIT RUNGE-KUTTA PROCESSES [J].
BUTCHER, JC .
MATHEMATICS OF COMPUTATION, 1964, 18 (85) :50-&
[9]   COMPLETE SOLUTION OF FIFTH ORDER RUNGE-KUTTA EQUATIONS [J].
CASSITY, CR .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1969, 6 (03) :432-&