Wearable Sensor-Based Detection of Influenza in Presymptomatic and Asymptomatic Individuals

被引:11
作者
Temple, Dorota S. [1 ]
Hegarty-Craver, Meghan [1 ]
Furberg, Robert D. [1 ]
Preble, Edward A. [1 ]
Bergstrom, Emma [2 ]
Gardener, Zoe [2 ]
Dayananda, Pete [2 ]
Taylor, Lydia [2 ]
Lemm, Nana Marie [2 ]
Papargyris, Loukas [2 ]
McClain, Micah T. [3 ]
Nicholson, Bradly P. [3 ,4 ]
Bowie, Aleah [3 ]
Miggs, Maria [4 ]
Petzold, Elizabeth [3 ]
Woods, Christopher W. [4 ,5 ]
Chiu, Christopher [2 ]
Gilchrist, Kristin H. [1 ]
机构
[1] RTI Int, Res Triangle Pk, NC USA
[2] Imperial Coll London, Dept Infect Dis, London, England
[3] Duke Univ, Sch Med, Ctr Infect Dis Diagnost Innovat, Durham, NC USA
[4] Inst Med Res, Durham, NC USA
[5] Duke Univ, Sch Med, Hubert Yeargan Ctr Global Hlth, Durham, NC USA
关键词
heart rate monitoring; heart rate variability; wearable sensors; ECG; viral respiratory infection; influenza; COVID-19; HEART; INFECTION; DIAGNOSIS; COVID-19; TOOL;
D O I
10.1093/infdis/jiac262
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
In this human-challenge study, participants were monitored using wearable electrocardiogram sensors integrated with accelerometers. A semisupervised machine learning algorithm detected the infection in both symptomatic and asymptomatic individuals, on average 23 hours before the onset of symptoms. Background The COVID-19 pandemic highlighted the need for early detection of viral infections in symptomatic and asymptomatic individuals to allow for timely clinical management and public health interventions. Methods Twenty healthy adults were challenged with an influenza A (H3N2) virus and prospectively monitored from 7 days before through 10 days after inoculation, using wearable electrocardiogram and physical activity sensors. This framework allowed for responses to be accurately referenced to the infection event. For each participant, we trained a semisupervised multivariable anomaly detection model on data acquired before inoculation and used it to classify the postinoculation dataset. Results Inoculation with this challenge virus was well-tolerated with an infection rate of 85%. With the model classification threshold set so that no alarms were recorded in the 170 healthy days recorded, the algorithm correctly identified 16 of 17 (94%) positive presymptomatic and asymptomatic individuals, on average 58 hours postinoculation and 23 hours before the symptom onset. Conclusions The data processing and modeling methodology show promise for the early detection of respiratory illness. The detection algorithm is compatible with data collected from smartwatches using optical techniques but needs to be validated in large heterogeneous cohorts in normal living conditions. Clinical Trials Registration . NCT04204493.
引用
收藏
页码:864 / 872
页数:9
相关论文
共 46 条
  • [1] [Anonymous], 1996, Circulation, V93
  • [2] Estimating Effect of Antiviral Drug Use during Pandemic (H1N1) 2009 Outbreak, United States
    Atkins, Charisma Y.
    Patel, Anita
    Taylor, Thomas H., Jr.
    Biggerstaff, Matthew
    Merlin, Toby L.
    Dulin, Stephanie M.
    Erickson, Benjamin A.
    Borse, Rebekah H.
    Hunkler, Robert
    Meltzer, Martin I.
    [J]. EMERGING INFECTIOUS DISEASES, 2011, 17 (09) : 1591 - 1598
  • [3] Wearable Sensors Integrated with Internet of Things for Advancing eHealth Care
    Bayo-Monton, Jose-Luis
    Martinez-Millana, Antonio
    Han, Weisi
    Fernandez-Llatas, Carlos
    Sun, Yan
    Traver, Vicente
    [J]. SENSORS, 2018, 18 (06)
  • [4] Investigating sources of inaccuracy in wearable optical heart rate sensors
    Bent, Brinnae
    Goldstein, Benjamin A.
    Kibbe, Warren A.
    Dunn, Jessilyn P.
    [J]. NPJ DIGITAL MEDICINE, 2020, 3 (01)
  • [5] Molnupiravir for Oral Treatment of Covid-19 in Nonhospitalized Patients
    Bernal, A. Jayk
    da Silva, M. M. Gomes
    Musungaie, D. B.
    Kovalchuk, E.
    Gonzalez, A.
    Delos Reyes, V
    Martin-Quiros, A.
    Caraco, Y.
    Williams-Diaz, A.
    Brown, M. L.
    Du, J.
    Pedley, A.
    Assaid, C.
    Strizki, J.
    Grobler, J. A.
    Shamsuddin, H. H.
    Tipping, R.
    Wan, H.
    Paschke, A.
    Butterton, J. R.
    Johnson, M. G.
    De Anda, C.
    [J]. NEW ENGLAND JOURNAL OF MEDICINE, 2022, 386 (06) : 509 - 520
  • [6] Bittium, 2019, BITT FAR TECHN SPEC
  • [7] Champseix, AURA HEALTHCARE HRV
  • [8] Predictive Monitoring of Mobile Patients by Combining Clinical Observations With Data From Wearable Sensors
    Clifton, Lei
    Clifton, David A.
    Pimentel, Marco A. F.
    Watkinson, Peter J.
    Tarassenko, Lionel
    [J]. IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2014, 18 (03) : 722 - 730
  • [9] Modeling mitigation of influenza epidemics by baloxavir
    Du, Zhanwei
    Nugent, Ciara
    Galvani, Alison P.
    Krug, Robert M.
    Meyers, Lauren Ancel
    [J]. NATURE COMMUNICATIONS, 2020, 11 (01)
  • [10] Early Remdesivir to Prevent Progression to Severe Covid-19 in Outpatients
    Gottlieb, R. L.
    Vaca, C. E.
    Paredes, R.
    Mera, J.
    Webb, B. J.
    Perez, G.
    Oguchi, G.
    Ryan, P.
    Nielsen, B. U.
    Brown, M.
    Hidalgo, A.
    Sachdeva, Y.
    Mittal, S.
    Osiyemi, O.
    Skarbinski, J.
    Juneja, K.
    Hyland, R. H.
    Osinusi, A.
    Chen, S.
    Camus, G.
    Abdelghany, M.
    Davies, S.
    Behenna-Renton, N.
    Duff, F.
    Marty, F. M.
    Katz, M. J.
    Ginde, A. A.
    Brown, S. M.
    Schiffer, J. T.
    Hill, J. A.
    [J]. NEW ENGLAND JOURNAL OF MEDICINE, 2022, 386 (04) : 305 - 315