Can a deep-learning model make fast predictions of vacancy formation in diverse materials?

被引:7
作者
Choudhary, Kamal [1 ]
Sumpter, Bobby G. [2 ]
机构
[1] Natl Inst Stand & Technol, Mat Sci & Engn Div, Gaithersburg, MD 20899 USA
[2] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN 37831 USA
关键词
TOTAL-ENERGY CALCULATIONS; METALS; DIFFUSION;
D O I
10.1063/5.0135382
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The presence of point defects, such as vacancies, plays an important role in materials design. Here, we explore the extrapolative power of a graph neural network (GNN) to predict vacancy formation energies. We show that a model trained only on perfect materials can also be used to predict vacancy formation energies (Evac) of defect structures without the need for additional training data. Such GNN-based predictions are considerably faster than density functional theory (DFT) calculations and show potential as a quick pre-screening tool for defect systems. To test this strategy, we developed a DFT dataset of 530 Evac consisting of 3D elemental solids, alloys, oxides, semiconductors, and 2D monolayer materials. We analyzed and discussed the applicability of such direct and fast predictions. We applied the model to predict 192 494 Evac for 55 723 materials in the JARVIS-DFT database. Our work demonstrates how a GNN-model performs on unseen data.
引用
收藏
页数:6
相关论文
共 50 条
[1]   Evolutionary computing and machine learning for discovering of low-energy defect configurations [J].
Arrigoni, Marco ;
Madsen, Georg K. H. .
NPJ COMPUTATIONAL MATERIALS, 2021, 7 (01)
[2]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[3]   Vacancy formation energy and its connection with bonding environment in solid: A high-throughput calculation and machine learning study [J].
Cheng, YingXing ;
Zhu, Linggang ;
Wang, Guanjie ;
Zhou, Jian ;
Elliott, Stephen R. ;
Sun, Zhimei .
COMPUTATIONAL MATERIALS SCIENCE, 2020, 183
[4]  
Choudhary Kamal, 2023, Figshare, DOI 10.6084/m9.figshare.23000573.v3
[5]   Unified graph neural network force-field for the periodic table: solid state applications [J].
Choudhary, Kamal ;
Decost, Brian ;
Major, Lily ;
Butler, Keith ;
Thiyagalingam, Jeyan ;
Tavazza, Francesca .
DIGITAL DISCOVERY, 2023, 2 (02) :346-355
[6]   Designing high-TC superconductors with BCS-inspired screening, density functional theory, and deep-learning [J].
Choudhary, Kamal ;
Garrity, Kevin .
NPJ COMPUTATIONAL MATERIALS, 2022, 8 (01)
[7]   Graph neural network predictions of metal organic framework CO2 adsorption properties [J].
Choudhary, Kamal ;
Yildirim, Taner ;
Siderius, Daniel W. ;
Kusne, A. Gilad ;
McDannald, Austin ;
Ortiz-Montalvo, Diana L. .
COMPUTATIONAL MATERIALS SCIENCE, 2022, 210
[8]   Recent advances and applications of deep learning methods in materials science [J].
Choudhary, Kamal ;
DeCost, Brian ;
Chen, Chi ;
Jain, Anubhav ;
Tavazza, Francesca ;
Cohn, Ryan ;
Park, Cheol Woo ;
Choudhary, Alok ;
Agrawal, Ankit ;
Billinge, Simon J. L. ;
Holm, Elizabeth ;
Ong, Shyue Ping ;
Wolverton, Chris .
NPJ COMPUTATIONAL MATERIALS, 2022, 8 (01)
[9]   Atomistic Line Graph Neural Network for improved materials property predictions [J].
Choudhary, Kamal ;
DeCost, Brian .
NPJ COMPUTATIONAL MATERIALS, 2021, 7 (01)
[10]   The joint automated repository for various integrated simulations (JARVIS) for data-driven materials design [J].
Choudhary, Kamal ;
Garrity, Kevin F. ;
Reid, Andrew C. E. ;
DeCost, Brian ;
Biacchi, Adam J. ;
Hight Walker, Angela R. ;
Trautt, Zachary ;
Hattrick-Simpers, Jason ;
Kusne, A. Gilad ;
Centrone, Andrea ;
Davydov, Albert ;
Jiang, Jie ;
Pachter, Ruth ;
Cheon, Gowoon ;
Reed, Evan ;
Agrawal, Ankit ;
Qian, Xiaofeng ;
Sharma, Vinit ;
Zhuang, Houlong ;
Kalinin, Sergei V. ;
Sumpter, Bobby G. ;
Pilania, Ghanshyam ;
Acar, Pinar ;
Mandal, Subhasish ;
Haule, Kristjan ;
Vanderbilt, David ;
Rabe, Karin ;
Tavazza, Francesca .
NPJ COMPUTATIONAL MATERIALS, 2020, 6 (01)