GOA-optimized deep learning for soybean yield estimation using multi-source remote sensing data

被引:17
作者
Lu, Jian [1 ]
Fu, Hongkun [2 ]
Tang, Xuhui [3 ]
Liu, Zhao [4 ]
Huang, Jujian [5 ]
Zou, Wenlong [4 ]
Chen, Hui [4 ]
Sun, Yue [4 ]
Ning, Xiangyu [4 ]
Li, Jian [1 ]
机构
[1] Jilin Agr Univ, Inst Smart Agr, Changchun 130118, Peoples R China
[2] Jilin Agr Univ, Coll Agr, Changchun 130118, Peoples R China
[3] Jilin Agr Univ, Coll Informat Technol, Changchun 130118, Peoples R China
[4] Chinese Acad Sci, Northeast Inst Geog & Agroecol, Changchun 130102, Peoples R China
[5] Jilin Jianzhu Univ, Coll Surveying & Explorat Engn, Changchun 130119, Peoples R China
关键词
GOA; Deep learning framework; Multi-source remote sensing data; Soybean yield estimation; Photosynthesis-related parameters; CROP YIELD; WHEAT YIELD; ALGORITHM THEORY; CLIMATE DATA; TIME-SERIES; DROUGHT; VEGETATION; PREDICTION; SATELLITE; IMAGERY;
D O I
10.1038/s41598-024-57278-6
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Accurately estimating large-area crop yields, especially for soybeans, is essential for addressing global food security challenges. This study introduces a deep learning framework that focuses on precise county-level soybean yield estimation in the United States. It utilizes a wide range of multi-variable remote sensing data. The model used in this study is a state-of-the-art CNN-BiGRU model, which is enhanced by the GOA and a novel attention mechanism (GCBA). This model excels in handling intricate time series and diverse remote sensing datasets. Compared to five leading machine learning and deep learning models, our GCBA model demonstrates superior performance, particularly in the 2019 and 2020 evaluations, achieving remarkable R2, RMSE, MAE and MAPE values. This sets a new benchmark in yield estimation accuracy. Importantly, the study highlights the significance of integrating multi-source remote sensing data. It reveals that synthesizing information from various sensors and incorporating photosynthesis-related parameters significantly enhances yield estimation precision. These advancements not only provide transformative insights for precision agricultural management but also establish a solid scientific foundation for informed decision-making in global agricultural production and food security.
引用
收藏
页数:19
相关论文
共 78 条
[1]   A comprehensive survey of the Grasshopper optimization algorithm: results, variants, and applications [J].
Abualigah, Laith ;
Diabat, Ali .
NEURAL COMPUTING & APPLICATIONS, 2020, 32 (19) :15533-15556
[2]   Coupled online sequential extreme learning machine model with ant colony optimization algorithm for wheat yield prediction [J].
Ali, Mumtaz ;
Deo, Ravinesh C. ;
Xiang, Yong ;
Prasad, Ramendra ;
Li, Jianxin ;
Farooque, Aitazaz ;
Yaseen, Zaher Mundher .
SCIENTIFIC REPORTS, 2022, 12 (01)
[3]   The Evaporative Stress Index as an indicator of agricultural drought in Brazil: An assessment based on crop yield impacts [J].
Anderson, Martha C. ;
Zolin, Cornelio A. ;
Sentelhas, Paulo C. ;
Hain, Christopher R. ;
Semmens, Kathryn ;
Yilmaz, M. Tugrul ;
Gao, Feng ;
Otkin, Jason A. ;
Tetrault, Robert .
REMOTE SENSING OF ENVIRONMENT, 2016, 174 :82-99
[4]   Satellite-Based Characterization of Convection and Impacts from the Catastrophic 10 August 2020 Midwest US Derecho [J].
Bell, Jordan R. ;
Bedka, Kristopher M. ;
Schultz, Christopher J. ;
Molthan, Andrew L. ;
Bang, Sarah D. ;
Glisan, Justin ;
Ford, Trent ;
Lincoln, W. Scott ;
Schultz, Lori A. ;
Melancon, Alexander M. ;
Wisinski, Emily F. ;
Itterly, Kyle ;
Homeyer, Cameron R. ;
Cecil, Daniel J. ;
Cogil, Craig ;
Donavon, Rodney ;
Lenning, Eric ;
Wolf, Ray .
BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY, 2022, 103 (04) :E1172-E1196
[5]   Integrating satellite and climate data to predict wheat yield in Australia using machine learning approaches [J].
Cai, Yaping ;
Guan, Kaiyu ;
Lobell, David ;
Potgieter, Andries B. ;
Wang, Shaowen ;
Peng, Jian ;
Xu, Tianfang ;
Asseng, Senthold ;
Zhang, Yongguang ;
You, Liangzhi ;
Peng, Bin .
AGRICULTURAL AND FOREST METEOROLOGY, 2019, 274 :144-159
[6]   Wheat yield predictions at a county and field scale with deep learning, machine learning, and google earth engine [J].
Cao, Juan ;
Zhang, Zhao ;
Luo, Yuchuan ;
Zhang, Liangliang ;
Zhang, Jing ;
Li, Ziyue ;
Tao, Fulu .
EUROPEAN JOURNAL OF AGRONOMY, 2021, 123
[7]   Integrating Multi-Source Data for Rice Yield Prediction across China using Machine Learning and Deep Learning Approaches [J].
Cao, Juan ;
Zhang, Zhao ;
Tao, Fulu ;
Zhang, Liangliang ;
Luo, Yuchuan ;
Zhang, Jing ;
Han, Jichong ;
Xie, Jun .
AGRICULTURAL AND FOREST METEOROLOGY, 2021, 297
[8]   Identifying the Contributions of Multi-Source Data for Winter Wheat Yield Prediction in China [J].
Cao, Juan ;
Zhang, Zhao ;
Tao, Fulu ;
Zhang, Liangliang ;
Luo, Yuchuan ;
Han, Jichong ;
Li, Ziyue .
REMOTE SENSING, 2020, 12 (05)
[9]   A long-term reconstructed TROPOMI solar-induced fluorescence dataset using machine learning algorithms [J].
Chen, Xingan ;
Huang, Yuefei ;
Nie, Chong ;
Zhang, Shuo ;
Wang, Guangqian ;
Chen, Shiliu ;
Chen, Zhichao .
SCIENTIFIC DATA, 2022, 9 (01)
[10]   Nationwide crop yield estimation based on photosynthesis and meteorological stress indices [J].
Chen, Yang ;
Donohue, Randall J. ;
McVicar, Tim R. ;
Waldner, Francois ;
Mata, Gonzalo ;
Ota, Noboru ;
Houshmandfar, Alireza ;
Dayal, Kavina ;
Lawes, Roger A. .
AGRICULTURAL AND FOREST METEOROLOGY, 2020, 284