Metabolomic machine learning predictor for diagnosis and prognosis of gastric cancer

被引:48
作者
Chen, Yangzi [1 ]
Wang, Bohong [1 ,2 ]
Zhao, Yizi [1 ]
Shao, Xinxin [3 ]
Wang, Mingshuo [1 ,2 ]
Ma, Fuhai [3 ,4 ]
Yang, Laishou [5 ]
Nie, Meng [1 ]
Jin, Peng [3 ,6 ]
Yao, Ke [1 ]
Song, Haibin [7 ]
Lou, Shenghan [5 ]
Wang, Hang [5 ]
Yang, Tianshu [8 ,9 ]
Tian, Yantao [3 ]
Han, Peng [10 ,11 ]
Hu, Zeping [1 ,2 ]
机构
[1] Tsinghua Univ, Sch Pharmaceut Sci, Beijing 100084, Peoples R China
[2] Tsinghua Univ, Tsinghua Peking Joint Ctr Life Sci, Beijing 100084, Peoples R China
[3] Chinese Acad Med Sci, Natl Canc Ctr, Natl Clin Res Ctr Canc, Canc Hosp,Peking Union Med Coll, Beijing 100730, Peoples R China
[4] Chinese Acad Med Sci, Natl Ctr Gerontol, Inst Geriatr Med, Dept Gen Surg,Dept Gastrointestinal Surg,Beijing H, Beijing 100730, Peoples R China
[5] Harbin Med Univ, Canc Hosp, Dept Colorectal Surg, Harbin 150081, Peoples R China
[6] Tianjin Med Univ, Tianjins Clin Res Ctr Canc, Key Lab Canc Prevent & Therapy, Dept Gastroenterol,Canc Inst & Hosp,Natl Clin Res, Tianjin 300060, Peoples R China
[7] Harbin Med Univ, Canc Hosp, Dept Gastrointestinal Surg, Harbin 150081, Peoples R China
[8] Fudan Univ, Inst Metab & Integrat Biol, Inst Biomed Sci, Shanghai Key Lab Metab Remodeling & Hlth, Shanghai 200032, Peoples R China
[9] Shanghai Qi Zhi Inst, Shanghai 200438, Peoples R China
[10] Harbin Med Univ, Dept Oncol Surg, Canc Hosp, Harbin 150081, Peoples R China
[11] Key Lab Tumor Immunol Heilongjiang, Harbin 150081, Peoples R China
基金
中国国家自然科学基金;
关键词
LARGE-SCALE; BIOMARKERS; REVEALS; IDENTIFICATION; VALIDATION; NEOPTERIN; PATHWAYS; STAGE; RISK;
D O I
10.1038/s41467-024-46043-y
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Gastric cancer (GC) represents a significant burden of cancer-related mortality worldwide, underscoring an urgent need for the development of early detection strategies and precise postoperative interventions. However, the identification of non-invasive biomarkers for early diagnosis and patient risk stratification remains underexplored. Here, we conduct a targeted metabolomics analysis of 702 plasma samples from multi-center participants to elucidate the GC metabolic reprogramming. Our machine learning analysis reveals a 10-metabolite GC diagnostic model, which is validated in an external test set with a sensitivity of 0.905, outperforming conventional methods leveraging cancer protein markers (sensitivity < 0.40). Additionally, our machine learning-derived prognostic model demonstrates superior performance to traditional models utilizing clinical parameters and effectively stratifies patients into different risk groups to guide precision interventions. Collectively, our findings reveal the metabolic landscape of GC and identify two distinct biomarker panels that enable early detection and prognosis prediction respectively, thus facilitating precision medicine in GC.
引用
收藏
页数:13
相关论文
共 80 条
  • [1] Identification and validation of a multivariable prediction model based on blood plasma and serum metabolomics for the distinction of chronic pancreatitis subjects from non-pancreas disease control subjects
    Adam, M. Gordian
    Beyer, Georg
    Christiansen, Nicole
    Kamlage, Beate
    Pilarsky, Christian
    Distler, Marius
    Fahlbusch, Tim
    Chromik, Ansgar
    Klein, Fritz
    Bahra, Marcus
    Uhl, Waldemar
    Gruetzmann, Robert
    Mahajan, Ujjwal M.
    Weiss, Frank U.
    Mayerle, Julia
    Lerch, Markus M.
    [J]. GUT, 2021, 70 (11) : 2150 - 2158
  • [2] Large-scale human metabolomics studies: A strategy for data (pre-) processing and validation
    Bijlsma, S
    Bobeldijk, L
    Verheij, ER
    Ramaker, R
    Kochhar, S
    Macdonald, IA
    van Ommen, B
    Smilde, AK
    [J]. ANALYTICAL CHEMISTRY, 2006, 78 (02) : 567 - 574
  • [3] A New Diagnostic and Prognostic Marker in Endometrial Cancer: Neopterin
    Bostanci, Esra Isci
    Dikmen, Asiye Ugras
    Girgin, Gozde
    Gungor, Tayfun
    Baydar, Terken
    Danisman, Ahmet Nuri
    [J]. INTERNATIONAL JOURNAL OF GYNECOLOGICAL CANCER, 2017, 27 (04) : 754 - 758
  • [4] Random forests
    Breiman, L
    [J]. MACHINE LEARNING, 2001, 45 (01) : 5 - 32
  • [5] Prognostic and predictive value of a pathomics signature in gastric cancer
    Chen, Dexin
    Fu, Meiting
    Chi, Liangjie
    Lin, Liyan
    Cheng, Jiaxin
    Xue, Weisong
    Long, Chenyan
    Jiang, Wei
    Dong, Xiaoyu
    Sui, Jian
    Lin, Dajia
    Lu, Jianping
    Zhuo, Shuangmu
    Liu, Side
    Li, Guoxin
    Chen, Gang
    Yan, Jun
    [J]. NATURE COMMUNICATIONS, 2022, 13 (01)
  • [6] Enhanced fatty acid oxidation mediated by CPT1C promotes gastric cancer progression
    Chen, Tianyi
    Wu, Guiyang
    Hu, Hai
    Wu, Chongshan
    [J]. JOURNAL OF GASTROINTESTINAL ONCOLOGY, 2020, 11 (04) : 695 - +
  • [7] Development and validation of a prognostic and predictive 32-gene signature for gastric cancer
    Cheong, Jae-Ho
    Wang, Sam C.
    Park, Sunho
    Porembka, Matthew R.
    Christie, Alana L.
    Kim, Hyunki
    Kim, Hyo Song
    Zhu, Hong
    Hyung, Woo Jin
    Noh, Sung Hoon
    Hu, Bo
    Hong, Changjin
    Karalis, John D.
    Kim, In-Ho
    Lee, Sung Hak
    Hwang, Tae Hyun
    [J]. NATURE COMMUNICATIONS, 2022, 13 (01)
  • [8] Multiple Plasma Biomarkers for Risk Stratification in Patients With Heart Failure and Preserved Ejection Fraction
    Chirinos, Julio A.
    Orlenko, Alena
    Zhao, Lei
    Basso, Michael D.
    Cvijic, Mary Ellen
    Li, Zhuyin
    Spires, Thomas E.
    Yarde, Melissa
    Wang, Zhaoqing
    Seiffert, Dietmar A.
    Prenner, Stuart
    Zamani, Payman
    Bhattacharya, Priyanka
    Kumar, Anupam
    Margulies, Kenneth B.
    Car, Bruce D.
    Gordon, David A.
    Moore, Jason H.
    Cappola, Thomas P.
    [J]. JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2020, 75 (11) : 1281 - 1295
  • [9] Exploratory Evaluation of Neopterin and Chitotriosidase as Potential Circulating Biomarkers for Colorectal Cancer
    Ciocan, Andra
    Ciocan, Razvan A.
    Al Hajjar, Nadim
    Benea, Andreea M.
    Pandrea, Stanca L.
    Catana, Cristina S.
    Drugan, Cristina
    Oprea, Valentin C.
    Dirzu, Dan S.
    Bolboaca, Sorana D.
    [J]. BIOMEDICINES, 2023, 11 (03)
  • [10] Use of Metabolomics as a Complementary Omic Approach to Implement Risk Criteria for First-Degree Relatives of Gastric Cancer Patients
    Corona, Giuseppe
    Cannizzaro, Renato
    Miolo, Gianmaria
    Caggiari, Laura
    De Zorzi, Mariangela
    Repetto, Ombretta
    Steffan, Agostino
    De Re, Valli
    [J]. INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2018, 19 (03)