Metabolomic machine learning predictor for diagnosis and prognosis of gastric cancer

被引:92
作者
Chen, Yangzi [1 ]
Wang, Bohong [1 ,2 ]
Zhao, Yizi [1 ]
Shao, Xinxin [3 ]
Wang, Mingshuo [1 ,2 ]
Ma, Fuhai [3 ,4 ]
Yang, Laishou [5 ]
Nie, Meng [1 ]
Jin, Peng [3 ,6 ]
Yao, Ke [1 ]
Song, Haibin [7 ]
Lou, Shenghan [5 ]
Wang, Hang [5 ]
Yang, Tianshu [8 ,9 ]
Tian, Yantao [3 ]
Han, Peng [10 ,11 ]
Hu, Zeping [1 ,2 ]
机构
[1] Tsinghua Univ, Sch Pharmaceut Sci, Beijing 100084, Peoples R China
[2] Tsinghua Univ, Tsinghua Peking Joint Ctr Life Sci, Beijing 100084, Peoples R China
[3] Chinese Acad Med Sci, Natl Canc Ctr, Natl Clin Res Ctr Canc, Canc Hosp,Peking Union Med Coll, Beijing 100730, Peoples R China
[4] Chinese Acad Med Sci, Natl Ctr Gerontol, Inst Geriatr Med, Dept Gen Surg,Dept Gastrointestinal Surg,Beijing H, Beijing 100730, Peoples R China
[5] Harbin Med Univ, Canc Hosp, Dept Colorectal Surg, Harbin 150081, Peoples R China
[6] Tianjin Med Univ, Tianjins Clin Res Ctr Canc, Key Lab Canc Prevent & Therapy, Dept Gastroenterol,Canc Inst & Hosp,Natl Clin Res, Tianjin 300060, Peoples R China
[7] Harbin Med Univ, Canc Hosp, Dept Gastrointestinal Surg, Harbin 150081, Peoples R China
[8] Fudan Univ, Inst Metab & Integrat Biol, Inst Biomed Sci, Shanghai Key Lab Metab Remodeling & Hlth, Shanghai 200032, Peoples R China
[9] Shanghai Qi Zhi Inst, Shanghai 200438, Peoples R China
[10] Harbin Med Univ, Dept Oncol Surg, Canc Hosp, Harbin 150081, Peoples R China
[11] Key Lab Tumor Immunol Heilongjiang, Harbin 150081, Peoples R China
基金
中国国家自然科学基金;
关键词
LARGE-SCALE; BIOMARKERS; REVEALS; IDENTIFICATION; VALIDATION; NEOPTERIN; PATHWAYS; STAGE; RISK;
D O I
10.1038/s41467-024-46043-y
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Gastric cancer (GC) represents a significant burden of cancer-related mortality worldwide, underscoring an urgent need for the development of early detection strategies and precise postoperative interventions. However, the identification of non-invasive biomarkers for early diagnosis and patient risk stratification remains underexplored. Here, we conduct a targeted metabolomics analysis of 702 plasma samples from multi-center participants to elucidate the GC metabolic reprogramming. Our machine learning analysis reveals a 10-metabolite GC diagnostic model, which is validated in an external test set with a sensitivity of 0.905, outperforming conventional methods leveraging cancer protein markers (sensitivity < 0.40). Additionally, our machine learning-derived prognostic model demonstrates superior performance to traditional models utilizing clinical parameters and effectively stratifies patients into different risk groups to guide precision interventions. Collectively, our findings reveal the metabolic landscape of GC and identify two distinct biomarker panels that enable early detection and prognosis prediction respectively, thus facilitating precision medicine in GC.
引用
收藏
页数:13
相关论文
共 80 条
[1]   Identification and validation of a multivariable prediction model based on blood plasma and serum metabolomics for the distinction of chronic pancreatitis subjects from non-pancreas disease control subjects [J].
Adam, M. Gordian ;
Beyer, Georg ;
Christiansen, Nicole ;
Kamlage, Beate ;
Pilarsky, Christian ;
Distler, Marius ;
Fahlbusch, Tim ;
Chromik, Ansgar ;
Klein, Fritz ;
Bahra, Marcus ;
Uhl, Waldemar ;
Gruetzmann, Robert ;
Mahajan, Ujjwal M. ;
Weiss, Frank U. ;
Mayerle, Julia ;
Lerch, Markus M. .
GUT, 2021, 70 (11) :2150-2158
[2]   Large-scale human metabolomics studies: A strategy for data (pre-) processing and validation [J].
Bijlsma, S ;
Bobeldijk, L ;
Verheij, ER ;
Ramaker, R ;
Kochhar, S ;
Macdonald, IA ;
van Ommen, B ;
Smilde, AK .
ANALYTICAL CHEMISTRY, 2006, 78 (02) :567-574
[3]   A New Diagnostic and Prognostic Marker in Endometrial Cancer: Neopterin [J].
Bostanci, Esra Isci ;
Dikmen, Asiye Ugras ;
Girgin, Gozde ;
Gungor, Tayfun ;
Baydar, Terken ;
Danisman, Ahmet Nuri .
INTERNATIONAL JOURNAL OF GYNECOLOGICAL CANCER, 2017, 27 (04) :754-758
[4]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[5]   Prognostic and predictive value of a pathomics signature in gastric cancer [J].
Chen, Dexin ;
Fu, Meiting ;
Chi, Liangjie ;
Lin, Liyan ;
Cheng, Jiaxin ;
Xue, Weisong ;
Long, Chenyan ;
Jiang, Wei ;
Dong, Xiaoyu ;
Sui, Jian ;
Lin, Dajia ;
Lu, Jianping ;
Zhuo, Shuangmu ;
Liu, Side ;
Li, Guoxin ;
Chen, Gang ;
Yan, Jun .
NATURE COMMUNICATIONS, 2022, 13 (01)
[6]   Enhanced fatty acid oxidation mediated by CPT1C promotes gastric cancer progression [J].
Chen, Tianyi ;
Wu, Guiyang ;
Hu, Hai ;
Wu, Chongshan .
JOURNAL OF GASTROINTESTINAL ONCOLOGY, 2020, 11 (04) :695-+
[7]   Development and validation of a prognostic and predictive 32-gene signature for gastric cancer [J].
Cheong, Jae-Ho ;
Wang, Sam C. ;
Park, Sunho ;
Porembka, Matthew R. ;
Christie, Alana L. ;
Kim, Hyunki ;
Kim, Hyo Song ;
Zhu, Hong ;
Hyung, Woo Jin ;
Noh, Sung Hoon ;
Hu, Bo ;
Hong, Changjin ;
Karalis, John D. ;
Kim, In-Ho ;
Lee, Sung Hak ;
Hwang, Tae Hyun .
NATURE COMMUNICATIONS, 2022, 13 (01)
[8]   Multiple Plasma Biomarkers for Risk Stratification in Patients With Heart Failure and Preserved Ejection Fraction [J].
Chirinos, Julio A. ;
Orlenko, Alena ;
Zhao, Lei ;
Basso, Michael D. ;
Cvijic, Mary Ellen ;
Li, Zhuyin ;
Spires, Thomas E. ;
Yarde, Melissa ;
Wang, Zhaoqing ;
Seiffert, Dietmar A. ;
Prenner, Stuart ;
Zamani, Payman ;
Bhattacharya, Priyanka ;
Kumar, Anupam ;
Margulies, Kenneth B. ;
Car, Bruce D. ;
Gordon, David A. ;
Moore, Jason H. ;
Cappola, Thomas P. .
JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2020, 75 (11) :1281-1295
[9]   Exploratory Evaluation of Neopterin and Chitotriosidase as Potential Circulating Biomarkers for Colorectal Cancer [J].
Ciocan, Andra ;
Ciocan, Razvan A. ;
Al Hajjar, Nadim ;
Benea, Andreea M. ;
Pandrea, Stanca L. ;
Catana, Cristina S. ;
Drugan, Cristina ;
Oprea, Valentin C. ;
Dirzu, Dan S. ;
Bolboaca, Sorana D. .
BIOMEDICINES, 2023, 11 (03)
[10]   Use of Metabolomics as a Complementary Omic Approach to Implement Risk Criteria for First-Degree Relatives of Gastric Cancer Patients [J].
Corona, Giuseppe ;
Cannizzaro, Renato ;
Miolo, Gianmaria ;
Caggiari, Laura ;
De Zorzi, Mariangela ;
Repetto, Ombretta ;
Steffan, Agostino ;
De Re, Valli .
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2018, 19 (03)