Dual-layer detector spectral CT-based machine learning models in the differential diagnosis of solitary pulmonary nodules

被引:1
作者
Lu, Hui [1 ]
Liu, Kaifang [2 ]
Zhao, Huan [1 ]
Wang, Yongqiang [1 ]
Shi, Bo [1 ]
机构
[1] Bengbu Med Coll, Sch Med Imaging, Bengbu 233030, Peoples R China
[2] Nanjing Med Univ, Affiliated Canc Hosp, Jiangsu Inst Canc Res, Dept Radiol,Jiangsu Canc Hosp, Nanjing 210000, Peoples R China
关键词
Machine learning; Dual-layer detector spectral CT; Solitary pulmonary nodules; Logistic regression; COMPUTED-TOMOGRAPHY; CLASSIFICATION; CANCER; ENHANCEMENT; BENIGN; PET/CT; HEAD;
D O I
10.1038/s41598-024-55280-6
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The benign and malignant status of solitary pulmonary nodules (SPNs) is a key determinant of treatment decisions. The main objective of this study was to validate the efficacy of machine learning (ML) models featured with dual-layer detector spectral computed tomography (DLCT) parameters in identifying the benign and malignant status of SPNs. 250 patients with pathologically confirmed SPN were included in this study. 8 quantitative and 16 derived parameters were obtained based on the regions of interest of the lesions on the patients' DLCT chest enhancement images. 6 ML models were constructed from 10 parameters selected after combining the patients' clinical parameters, including gender, age, and smoking history. The logistic regression model showed the best diagnostic performance with an area under the receiver operating characteristic curve (AUC) of 0.812, accuracy of 0.813, sensitivity of 0.750 and specificity of 0.791 on the test set. The results suggest that the ML models based on DLCT parameters are superior to the traditional CT parameter models in identifying the benign and malignant nature of SPNs, and have greater potential for application.
引用
收藏
页数:9
相关论文
共 37 条
[1]   Perinodular and Intranodular Radiomic Features on Lung CT Images Distinguish Adenocarcinomas from Granulomas [J].
Beig, Niha ;
Khorrami, Mohammadhadi ;
Alilou, Mehdi ;
Prasanna, Prateek ;
Braman, Nathaniel ;
Orooji, Mahdi ;
Rakshit, Sagar ;
Bera, Kaustav ;
Rajiah, Prabhakar ;
Ginsberg, Jennifer ;
Donatelli, Christopher ;
Thawani, Rajat ;
Yang, Michael ;
Jacono, Frank ;
Tiwari, Pallavi ;
Velcheti, Vamsidhar ;
Gilkeson, Robert ;
Linden, Philip ;
Madabhushi, Anant .
RADIOLOGY, 2019, 290 (03) :783-792
[2]  
Buck AK, 2010, J NUCL MED, V51, P401, DOI [10.2967/jnumed.108.059584, 10.2967/jnmt.108.059584]
[3]   Management of the Solitary Pulmonary Nodule [J].
Chan, Edward Y. ;
Gaur, Puja ;
Ge, Yimin ;
Kopas, Lisa ;
Santacruz, Jose F. ;
Gupta, Nakul ;
Munden, Reginald F. ;
Cagle, Philip T. ;
Kim, Min P. .
ARCHIVES OF PATHOLOGY & LABORATORY MEDICINE, 2017, 141 (07) :927-931
[4]   Diagnostic classification of solitary pulmonary nodules using dual time 18F-FDG PET/CT image texture features in granuloma-endemic regions [J].
Chen, Song ;
Harmon, Stephanie ;
Perk, Timothy ;
Li, Xuena ;
Chen, Meijie ;
Li, Yaming ;
Jeraj, Robert .
SCIENTIFIC REPORTS, 2017, 7
[5]   Comparison of Spectral and Perfusion Computed Tomography Imaging in the Differential Diagnosis of Peripheral Lung Cancer and Focal Organizing Pneumonia [J].
Deng, Liangna ;
Zhang, Guojin ;
Lin, Xiaoqiang ;
Han, Tao ;
Zhang, Bin ;
Jing, Mengyuan ;
Zhou, Junlin .
FRONTIERS IN ONCOLOGY, 2021, 11
[6]   Advanced dual-energy CT for head and neck cancer imaging [J].
Forghani, Reza .
EXPERT REVIEW OF ANTICANCER THERAPY, 2015, 15 (12) :1489-1501
[7]   The Solitary Pulmonary Nodule [J].
Harzheim, Dominik ;
Eberhardt, Ralf ;
Hoffmann, Hans ;
Herth, Felix J. F. .
RESPIRATION, 2015, 90 (02) :160-172
[8]   RANDOMIZED TRIAL OF LOBECTOMY VERSUS LIMITED RESECTION FOR T1 N0 NON-SMALL-CELL LUNG-CANCER [J].
HOLMES, CE ;
RUCKDESCHEL, JC ;
JOHNSTON, M ;
THOMAS, PA ;
DESLAURIERS, J ;
GROVER, FL ;
HILL, LD ;
FELD, R ;
GINSBERG, RJ ;
MOUNTAIN, CF ;
DZUIBAN, S ;
KIELY, M ;
MCKNEALLY, MF ;
MOORES, DWO ;
RAMNES, C ;
WAGNER, H ;
BUNN, P ;
CHU, H ;
DIENHART, D ;
HAZUKA, M ;
KINZIE, J ;
SORENSEN, J ;
VANCE, V ;
BRAUN, T ;
HOPEMAN, A ;
KANE, M ;
RUSS, P ;
WHITMAN, GJR ;
FALL, SM ;
HANSEN, DP ;
HENDERSON, RH ;
MONCRIEF, CL ;
PAULING, F ;
SIMS, J ;
TELL, D ;
WISELYCARR, S ;
ABERNATHY, CM ;
CLARK, DA ;
MCCROSKEY, B ;
MOORE, G ;
MOORE, F ;
MYERS, A ;
WHITE, M ;
BROOKS, RJ ;
BULL, M ;
JOHNSON, FB ;
NEIMYR, M ;
PAQUETTE, FR ;
SACCOMANNO, G ;
LAD, T .
ANNALS OF THORACIC SURGERY, 1995, 60 (03) :615-622
[9]  
Jiang T, 2020, BEHAV THER, V51, P675, DOI 10.1016/j.beth.2020.05.002
[10]   Development of a Machine Learning-Based Screening Method for Thyroid Nodules Classification by Solving the Imbalance Challenge in Thyroid Nodules Data [J].
Khodabandelu, Sajad ;
Ghaemian, Naser ;
Khafri, Soraya ;
Ezoji, Mehdi ;
Khaleghi, Sara .
JOURNAL OF RESEARCH IN HEALTH SCIENCES, 2022, 22 (03)