Numerical analysis of the geophysical parameter sensitivity on the multimode Love wave dispersion curves

被引:0
作者
Hamimu, La [1 ]
Cahyono, Edi [2 ]
Budiman, Herdi [2 ]
Haraty, Syamsul Razak [1 ]
Ransi, Natalis [2 ]
机构
[1] Halu Oleo Univ, Dept Geophys Engn, Kendari, Indonesia
[2] Halu Oleo Univ, Dept Math, Kendari, Indonesia
来源
JOURNAL OF PHYSICS COMMUNICATIONS | 2024年 / 8卷 / 01期
关键词
geophysical parameter sensitivity; Love wave dispersion curves; parameter perturbation; cut-off frequency; relative error; SURFACE-WAVES; RAYLEIGH-WAVE; INVERSION;
D O I
10.1088/2399-6528/ad1f71
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The characteristics of multimode Love wave dispersion curves are dependent on various geophysical parameters, namely shear wave velocity (SWV), layer thickness and density. This paper presents a novel numerical analysis of these parameters to determine which ones have a significant effect on the dispersion curves of multimode Love waves. Identifying parameter sensitivity is a crucial step in the inversion procedure of geophysical modeling. Our numerical analysis focuses on perturbing three geophysical parameters that influence the dispersion curves. The results confirm that SWV parameter is the most sensitive. By employing the same perturbation procedure, our numerical analysis reveals that the SWV parameter has a highly significant impact on the multimode Love wave dispersion curves. The average relative error (RE) values are found to be 27.33% for alpha = -0.2 and 25.51% for alpha = +0.2. Conversely, perturbing the layer thickness parameter demonstrates no significant influence on the dispersion curves, resulting in average RE values of 5.69% for alpha = -0.2 and 7.96% for alpha = +0.2. Furthermore, the perturbation of the density parameter exhibits an extremely negligible impact on the multimode Love wave dispersion curves, with average RE values on the order of 10-14%.
引用
收藏
页数:14
相关论文
共 24 条
  • [1] Effective dispersion curve and pseudo multimode dispersion curves for Rayleigh wave
    Zhang Shuangxi
    JOURNAL OF EARTH SCIENCE, 2011, 22 (02) : 226 - 230
  • [2] Effective Dispersion Curve and Pseudo Multimode Dispersion Curves for Rayleigh Wave
    张双喜
    Journal of Earth Science, 2011, (02) : 226 - 230
  • [3] Effective dispersion curve and pseudo multimode dispersion curves for Rayleigh wave
    Shuangxi Zhang
    Journal of Earth Science, 2011, 22 : 226 - 230
  • [4] Sensitivity analysis of multi-mode Rayleigh and Love wave phase-velocity dispersion curves in horizontal layered models
    Yin X.
    Xu H.
    Hao X.
    Sun S.
    Wang P.
    Xu, Hongrui (hongruixucug@126.com), 1600, Science Press (55): : 136 - 146
  • [5] Utilization of multimode Love wave dispersion curve inversion for geotechnical site investigation
    Hamimu, La
    Nawawi, Mohd
    Safani, Jamhir
    JOURNAL OF GEOPHYSICS AND ENGINEERING, 2011, 8 (02) : 341 - 350
  • [6] Joint wave-equation inversion of Rayleigh and Love dispersion curves
    Li, Jing
    Zhang, Chang
    Hanafy, Sherif
    Yu, Han
    Bai, Lige
    GEOPHYSICS, 2024, 89 (02) : R155 - R167
  • [7] Numerical simulation of Rayleigh wave zigzag dispersion curves of four typical strata
    Liu Xue-Ming
    Fan You-Hua
    Zhai Jia-Yu
    Liu Xue-Feng
    CHINESE JOURNAL OF GEOPHYSICS-CHINESE EDITION, 2009, 52 (12): : 3042 - 3050
  • [8] Sensitivity analysis of dispersion curves of Rayleigh waves with fundamental and higher modes
    Pan, Lei
    Chen, Xiaofei
    Wang, Jiannan
    Yang, Zhentao
    Zhang, Dazhou
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2019, 216 (02) : 1276 - 1303
  • [9] Seabed Shear-Wave Velocity Estimation from Dispersion Curves of Love Waves
    Dong, Hefeng
    Ke, Ganpan
    Duffaut, Kenneth
    ACTA ACUSTICA UNITED WITH ACUSTICA, 2013, 99 (06) : 890 - 897
  • [10] Shallow geology characterization using Rayleigh and Love wave dispersion curves derived from seismic noise array measurements
    Boxberger, T.
    Picozzi, M.
    Parolai, S.
    JOURNAL OF APPLIED GEOPHYSICS, 2011, 75 (02) : 345 - 354