The role of non-coding RNAs in muscle aging: regulatory mechanisms and therapeutic potential

被引:7
作者
Shin, Yeo Jin [1 ]
Kwon, Ki-Sun [1 ,2 ,3 ]
Suh, Yousin [4 ,5 ]
Lee, Kwang-Pyo [1 ,2 ]
机构
[1] Korea Res Inst Biosci & Biotechnol KRIBB, Aging Convergence Res Ctr, Daejeon, South Korea
[2] Korea Univ Sci & Technol UST, KRIBB Sch, Dept Biosci, Daejeon, South Korea
[3] Aventi Inc, Daejeon, South Korea
[4] Columbia Univ, Dept Obstet & Gynecol, New York, NY 10027 USA
[5] Columbia Univ, Dept Genet & Dev, New York, NY 10027 USA
基金
新加坡国家研究基金会;
关键词
ncRNA; miRNA; lncRNA; circRNA; skeletal muscle; aging; AGE-RELATED-CHANGES; SKELETAL-MUSCLE; CIRCULAR RNAS; CELLULAR SENESCENCE; MICRORNA EXPRESSION; DIFFERENTIATION; DECLINE; ATROPHY;
D O I
10.3389/fmolb.2023.1308274
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Muscle aging is a complex physiological process that leads to the progressive decline in muscle mass and function, contributing to debilitating conditions in the elderly such as sarcopenia. In recent years, non-coding RNAs (ncRNAs) have been increasingly recognized as major regulators of muscle aging and related cellular processes. Here, we comprehensively review the emerging role of ncRNAs, including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), in the regulation of muscle aging. We also discuss how targeting these ncRNAs can be explored for the development of novel interventions to combat age-related muscle decline. The insights provided in this review offer a promising avenue for future research and therapeutic strategies aimed at improving muscle health during aging.
引用
收藏
页数:10
相关论文
共 76 条
[61]   The functional consequences of age-related changes in microRNA expression in skeletal muscle [J].
Soriano-Arroquia, Ana ;
House, Louise ;
Tregilgas, Luke ;
Canty-Laird, Elizabeth ;
Goljanek-Whysall, Katarzyna .
BIOGERONTOLOGY, 2016, 17 (03) :641-654
[62]   Age-related changes in miR-143-3p:Igfbp5 interactions affect muscle regeneration [J].
Soriano-Arroquia, Ana ;
McCormick, Rachel ;
Molloy, Andrew P. ;
McArdle, Anne ;
Goljanek-Whysall, Katarzyna .
AGING CELL, 2016, 15 (02) :361-369
[63]   Gene regulation by long non-coding RNAs and its biological functions (vol 22, pg 96, 2021) [J].
Statello, Luisa ;
Guo, Chun-Jie ;
Chen, Ling-Ling ;
Huarte, Maite .
NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2021, 22 (02) :159-159
[64]   Altered microRNA expression in bovine skeletal muscle with age [J].
Sun, J. ;
Sonstegard, T. S. ;
Li, C. ;
Huang, Y. ;
Li, Z. ;
Lan, X. ;
Zhang, C. ;
Lei, C. ;
Zhao, X. ;
Chen, H. .
ANIMAL GENETICS, 2015, 46 (03) :227-238
[65]   Longevity-related molecular pathways are subject to midlife "switch" in humans [J].
Timmons, James A. ;
Volmar, Claude-Henry ;
Crossland, Hannah ;
Phillips, Bethan E. ;
Sood, Sanjana ;
Janczura, Karolina J. ;
Toermaekangas, Timo ;
Kujala, Urho M. ;
Kraus, William E. ;
Atherton, Philip J. ;
Wahlestedt, Claes .
AGING CELL, 2019, 18 (04)
[66]   MiR-33a targets FOSL1 and EN2 as a clinical prognostic marker for sarcopenia by glioma [J].
Wang, Wei ;
Liu, Wei ;
Xu, Jing ;
Jin, Hongze .
FRONTIERS IN GENETICS, 2022, 13
[67]   Noncoding RNAs in cancer therapy resistance and targeted drug development [J].
Wang, Wen-Tao ;
Han, Cai ;
Sun, Yu-Meng ;
Chen, Tian-Qi ;
Chen, Yue-Qin .
JOURNAL OF HEMATOLOGY & ONCOLOGY, 2019, 12 (1)
[68]  
Wang Y, 2020, AGING-US, V12, P24033, DOI [10.18632/aging.104095, 10.18632/aging.104095]
[69]   Noncoding RNA therapeutics - challenges and potential solutions [J].
Winkle, Melanie ;
El-Daly, Sherien M. ;
Fabbri, Muller ;
Calin, George A. .
NATURE REVIEWS DRUG DISCOVERY, 2021, 20 (08) :629-651
[70]   The exercise-induced long noncoding RNA CYTOR promotes fast-twitch myogenesis in aging [J].
Wohlwend, Martin ;
Laurila, Pirkka-Pekka ;
William, Kristine ;
Romani, Mario ;
Lima, Tanes ;
Pattawaran, Pattamaprapanont ;
Benegiamo, Giorgia ;
Salonen, Minna ;
Schneider, Bernard L. ;
Lahti, Jari ;
Eriksson, Johan G. ;
Barres, Romain ;
Wisloff, Ulrik ;
Moreira, Jose B. N. ;
Auwerx, Johan .
SCIENCE TRANSLATIONAL MEDICINE, 2021, 13 (623)