Proteome of spores from biological indicators in sterilization processes: Bacillus pumilus and Bacillus atrophaeus

被引:1
|
作者
Dorbani, Imed [1 ,2 ]
Armengaud, Jean [3 ]
Carlin, Frederic [1 ]
Duport, Catherine [4 ,5 ]
机构
[1] Avignon Univ, INRAE, UMR SQPOV, Avignon, France
[2] Claranor SA, Avignon, France
[3] Univ Paris Saclay, Dept Medicaments & Technol Sante DMTS, CEA, INRAE, Bagnols Sur Ceze, France
[4] Avignon Univ, INRAE, UMR SQPOV, Avignon, France
[5] Univ Avignon, UMR SQPOV, Avignon, France
关键词
Bacillus atrophaeus DSM675; Bacillus pumilus DSM492; bioindicators; proteome; spores; STRAINS; COAT;
D O I
10.1002/pmic.202300293
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Bacillus atrophaeus and Bacillus pumilus spores are widely used as biological indicators to assess the effectiveness of decontamination procedures. Spores are intricate, multi-layered cellular structures primarily composed of proteins, which significantly contribute to their extreme resistance. Therefore, conducting a comprehensive proteome analysis of spores is crucial to identify the specific proteins conferring spore resistance. Here, we employed a high-throughput shotgun proteomic approach to compare the spore proteomes of B. atrophaeus DSM675 and B. pumilus DSM492, identifying 1312 and 1264 proteins, respectively. While the overall number of proteins found in both strains is roughly equivalent, a closer examination of a subset of 54 spore-specific proteins revealed noteworthy distinctions. Among these 54 proteins, 23 were exclusively detected in one strain, while others were shared between both. Notably, of the 31 proteins detected in both strains, 10 exhibited differential abundance levels, including key coat layer morphogenetic proteins. The exploration of these 54 proteins, considering their presence, absence, and differential abundance, provides a unique molecular signature that may elucidate the differences in sensitivity/resistance profiles between the two strains.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Persistence strategies of Bacillus cereus spores isolated from dairy silo tanks
    Shaheen, Ranad
    Svensson, Birgitta
    Andersson, Maria A.
    Christiansson, Anders
    Salkinoja-Salonen, Mirja
    FOOD MICROBIOLOGY, 2010, 27 (03) : 347 - 355
  • [32] Thermal inactivation parameters of spores from different phylogenetic groups of Bacillus cereus
    Luu-Thi, Hue
    Khadka, Dambar Bahadur
    Michiels, Chris W.
    INTERNATIONAL JOURNAL OF FOOD MICROBIOLOGY, 2014, 189 : 183 - 188
  • [33] The effect of Perasafe® and sodium dichloroisocyanurate (NaDCC) against spores of Clostridium difficile and Bacillus atrophaeus on stainless steel and polyvinyl chloride surfaces
    Block, C
    JOURNAL OF HOSPITAL INFECTION, 2004, 57 (02) : 144 - 148
  • [34] Relations between phenotypic changes of spores and biofilm production by Bacillus atrophaeus ATCC 9372 growing in solid-state fermentation
    Sella, Sandra Regina B. R.
    Guizelini, Belquis P.
    Gouvea, Patricia Milla
    Figueiredo, Luis Felipe M.
    Ribeiro, Ciro A. O.
    Vandenberghe, Luciana P. S.
    Minozzo, Joao Carlos
    Soccol, Carlos Ricardo
    ARCHIVES OF MICROBIOLOGY, 2012, 194 (10) : 815 - 825
  • [35] High Pressure Thermal Sterilization and ε-Polylysine Synergistically Inactivate Bacillus subtilis Spores by Damaging the Inner Membrane
    Liu, Yue
    Zhang, Zhong
    Chen, Le
    Bi, Ke
    Yang, Jie
    Zhang, Bianfei
    Xin, Weishan
    JOURNAL OF FOOD PROTECTION, 2022, 85 (03) : 390 - 397
  • [36] Inactivation of High-pressure Thermal Sterilization Combining with Egg White Lysozyme on Bacillus subtilis Spores
    Xin W.
    Liu Y.
    Li J.
    Wu S.
    Wang X.
    Wang C.
    Zhang Z.
    Journal of Chinese Institute of Food Science and Technology, 2024, 24 (03) : 112 - 121
  • [37] Plant Growth-promoting Effects of Viable and Dead Spores of Bacillus pumilus TUAT1 on Setaria viridis
    Agake, Shin-ichiro
    do Amaral, Fernanda Plucani
    Yamada, Tetsuya
    Sekimoto, Hitoshi
    Stacey, Gary
    Yokoyama, Tadashi
    Ohkama-Ohtsu, Naoko
    MICROBES AND ENVIRONMENTS, 2022, 37 (01)
  • [38] Re-aerosolization of Bacillus thuringiensis spores from concrete and turf
    Bishop, A. H.
    O'Sullivan, C. M.
    Lane, A.
    Ellis, M. C. Butler
    Sellors, W. J.
    LETTERS IN APPLIED MICROBIOLOGY, 2017, 64 (05) : 364 - 369
  • [39] High-Level Heat Resistance of Spores of Bacillus amyloliquefaciens and Bacillus licheniformis Results from the Presence of a spoVA operon in a Tn1546 Transposon
    Berendsen, Erwin M.
    Koning, Rosella A.
    Boekhorst, Jos
    de Jong, Anne
    Kuipers, Oscar P.
    Wells-Bennik, Marion H. J.
    Frontiers in Microbiology, 2016, 7
  • [40] Detection of Bacillus anthracis and Bacillus anthracis-like spores in soil from state of Rio de Janeiro, Brazil
    Salgado, Jacqueline R. S.
    Rabinovitch, Leon
    Gomes, Maria de Fatima dos S.
    Allil, Regina Celia da S. B.
    Werneck, Marcelo Martins
    Rodrigues, Rafael B.
    Picao, Renata C.
    de Oliveira Luiz, Fernanda Baptista
    Vivoni, Adriana M.
    MEMORIAS DO INSTITUTO OSWALDO CRUZ, 2020, 115 : 1 - 10