Recurrent Self Fusion: Iterative Denoising for Consistent Retinal OCT Segmentation

被引:1
|
作者
Wei, Shuwen [1 ]
Liu, Yihao [1 ]
Bian, Zhangxing [1 ]
Wang, Yuli [2 ]
Zuo, Lianrui [1 ,3 ]
Calabresi, Peter A. [4 ]
Saidha, Shiv [4 ]
Prince, Jerry L. [1 ]
Carass, Aaron [1 ]
机构
[1] Johns Hopkins Univ, Dept Elect & Comp Engn, Baltimore, MD 21218 USA
[2] Johns Hopkins Univ, Sch Med, Dept Biomed Engn, Baltimore, MD 21287 USA
[3] NIA, NIH, Lab Behav Neurosci, Baltimore, MD 21224 USA
[4] Johns Hopkins Univ, Sch Med, Dept Neurol, Baltimore, MD 21287 USA
来源
OPHTHALMIC MEDICAL IMAGE ANALYSIS, OMIA 2023 | 2023年 / 14096卷
关键词
Optical coherence tomography; Denoise; Segmentation; MULTIPLE-SCLEROSIS; LAYER THICKNESS; IMAGES;
D O I
10.1007/978-3-031-44013-7_5
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Optical coherence tomography (OCT) is a valuable imaging technique in ophthalmology, providing high-resolution, cross-sectional images of the retina for early detection and monitoring of various retinal and neurological diseases. However, discrepancies in retinal layer thickness measurements among different OCT devices pose challenges for data comparison and interpretation, particularly in longitudinal analyses. This work introduces the idea of a recurrent self fusion (RSF) algorithm to address this issue. Our RSF algorithm, built upon the self fusion methodology, iteratively denoises retinal OCT images. A deep learning-based retinal OCT segmentation algorithm is employed for downstream analyses. A large dataset of paired OCT scans acquired on both a Spectralis and Cirrus OCT device are used for validation. The results demonstrate that the RSF algorithm effectively reduces speckle contrast and enhances the consistency of retinal OCT segmentation.
引用
收藏
页码:42 / 51
页数:10
相关论文
共 50 条
  • [31] Self-training adversarial learning for cross-domain retinal OCT fluid segmentation
    Li, Xiaohui
    Niu, Sijie
    Gao, Xizhan
    Zhou, Xueying
    Dong, Jiwen
    Zhao, Hui
    COMPUTERS IN BIOLOGY AND MEDICINE, 2023, 155
  • [32] Min-Cut Segmentation of Retinal OCT Images
    Dodo, Bashir Isa
    Li, Yongmin
    Eltayef, Khalid
    Liu, Xiaohui
    BIOMEDICAL ENGINEERING SYSTEMS AND TECHNOLOGIES, BIOSTEC 2018, 2019, 1024 : 86 - 99
  • [33] Automatic Vessel Shade-Robust Segmentation of Retinal Layers in OCT Images
    Gonzalez-Lopez, Ana
    Ortega, Marcos
    Penedo, Manuel G.
    Charlon, Pablo
    INNOVATION IN MEDICINE AND HEALTHCARE 2014, 2014, 207 : 47 - 54
  • [34] Automated Inner Limiting Membrane Segmentation in OCT Retinal Images for Glaucoma Detection
    Ramzan, Aneeqa
    Akram, M. Usman
    Ramzan, Javeria
    Mubarak, Qurat-ul-Ain
    Salam, Anum Abdul
    Yasin, Ubaid Ullah
    INTELLIGENT COMPUTING, VOL 2, 2019, 857 : 1278 - 1291
  • [35] The Edge Detectors Suitable for Retinal OCT Image Segmentation
    Luo, Su
    Yang, Jing
    Gao, Qian
    Zhou, Sheng
    Zhan, Chang'an A.
    JOURNAL OF HEALTHCARE ENGINEERING, 2017, 2017
  • [36] Active contour method for ILM segmentation in ONH volume scans in retinal OCT
    Gawlik, Kay
    Hausser, Frank
    Paul, Friedemann
    Brandt, Alexander U.
    Kadas, Ella Maria
    BIOMEDICAL OPTICS EXPRESS, 2018, 9 (12): : 6497 - 6518
  • [37] A Generative Model for OCT Retinal Layer Segmentation by Group wise Curve Alignment
    Duan, Wenjun
    Zheng, Yuanjie
    Ding, Yanhui
    Hou, Sujuan
    Tang, Yufang
    Xu, Yan
    Qin, Maoling
    Wu, Jianfeng
    Shen, Dinggang
    Bi, Hongsheng
    IEEE ACCESS, 2018, 6 : 25130 - 25141
  • [38] Inner limiting membrane segmentation and surface visualization method on retinal OCT images
    Ramos-Soto, Oscar
    Rodriguez-Esparza, Erick
    Perez-Cisneros, Marco
    Balderas-Mata, Sandra E.
    MEDICAL IMAGING 2021: BIOMEDICAL APPLICATIONS IN MOLECULAR, STRUCTURAL, AND FUNCTIONAL IMAGING, 2021, 11600
  • [39] Multi-Scale-Denoising Residual Convolutional Network for Retinal Disease Classification Using OCT
    Peng, Jinbo
    Lu, Jinling
    Zhuo, Junjie
    Li, Pengcheng
    SENSORS, 2024, 24 (01)
  • [40] Software updates of OCT segmentation algorithms influence longitudinal assessment of retinal atrophy
    Coric, Danko
    Petzold, Axel
    Uitdehaag, Bernard M. J.
    Balk, Lisanne J.
    JOURNAL OF THE NEUROLOGICAL SCIENCES, 2018, 387 : 16 - 20