Recurrent Self Fusion: Iterative Denoising for Consistent Retinal OCT Segmentation

被引:1
|
作者
Wei, Shuwen [1 ]
Liu, Yihao [1 ]
Bian, Zhangxing [1 ]
Wang, Yuli [2 ]
Zuo, Lianrui [1 ,3 ]
Calabresi, Peter A. [4 ]
Saidha, Shiv [4 ]
Prince, Jerry L. [1 ]
Carass, Aaron [1 ]
机构
[1] Johns Hopkins Univ, Dept Elect & Comp Engn, Baltimore, MD 21218 USA
[2] Johns Hopkins Univ, Sch Med, Dept Biomed Engn, Baltimore, MD 21287 USA
[3] NIA, NIH, Lab Behav Neurosci, Baltimore, MD 21224 USA
[4] Johns Hopkins Univ, Sch Med, Dept Neurol, Baltimore, MD 21287 USA
来源
OPHTHALMIC MEDICAL IMAGE ANALYSIS, OMIA 2023 | 2023年 / 14096卷
关键词
Optical coherence tomography; Denoise; Segmentation; MULTIPLE-SCLEROSIS; LAYER THICKNESS; IMAGES;
D O I
10.1007/978-3-031-44013-7_5
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Optical coherence tomography (OCT) is a valuable imaging technique in ophthalmology, providing high-resolution, cross-sectional images of the retina for early detection and monitoring of various retinal and neurological diseases. However, discrepancies in retinal layer thickness measurements among different OCT devices pose challenges for data comparison and interpretation, particularly in longitudinal analyses. This work introduces the idea of a recurrent self fusion (RSF) algorithm to address this issue. Our RSF algorithm, built upon the self fusion methodology, iteratively denoises retinal OCT images. A deep learning-based retinal OCT segmentation algorithm is employed for downstream analyses. A large dataset of paired OCT scans acquired on both a Spectralis and Cirrus OCT device are used for validation. The results demonstrate that the RSF algorithm effectively reduces speckle contrast and enhances the consistency of retinal OCT segmentation.
引用
收藏
页码:42 / 51
页数:10
相关论文
共 50 条
  • [21] Level Set Segmentation of Retinal OCT Images
    Dodo, Bashir
    Li, Yongmin
    Liu, XiaoHui
    Dodo, Muhammad
    BIOIMAGING: PROCEEDINGS OF THE 12TH INTERNATIONAL JOINT CONFERENCE ON BIOMEDICAL ENGINEERING SYSTEMS AND TECHNOLOGIES, VOL 2, 2019, : 49 - 56
  • [22] Unsupervised Denoising of Retinal OCT Images Based on Deep Learning
    Wu Guangyi
    Yuan Zhuoqun
    Liang Yanmei
    ACTA OPTICA SINICA, 2023, 43 (20)
  • [23] AUTOMATED SEGMENTATION OF RETINAL LAYERS IN OCT IMAGING AND DERIVED OPHTHALMIC MEASURES
    Rossant, Florence
    Ghorbel, Itebeddine
    Bloch, Isabelle
    Paques, Michel
    Tick, Sarah
    2009 IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: FROM NANO TO MACRO, VOLS 1 AND 2, 2009, : 1370 - +
  • [24] Superpixel guided active contour segmentation of retinal layers in OCT volumes
    Bai, Fangliang
    Gibson, Stuart J.
    Marques, Manuel J.
    Podoleanu, Adrian
    2ND CANTERBURY CONFERENCE ON OCT WITH EMPHASIS ON BROADBAND OPTICAL SOURCES, 2018, 10591
  • [25] Segmentation of retinal layers in volumetric OCT scans of normal and glaucomatous subjects
    Vermeer, K. A.
    van der Schoot, J.
    Lemij, H. G.
    de Boer, J. F.
    OPHTHALMIC TECHNOLOGIES XXI, 2011, 7885
  • [26] Comparison of Gaussian filter versus wavelet-based denoising on graph-based segmentation of retinal OCT images
    Roy, Priyanka
    Parthasarathy, Mohana Kuppuswamy
    Zelek, John
    Lakshminarayanan, Vasudevan
    MEDICAL IMAGING 2018: BIOMEDICAL APPLICATIONS IN MOLECULAR, STRUCTURAL, AND FUNCTIONAL IMAGING, 2018, 10578
  • [27] Retinal layer segmentation of macular OCT images using boundary classification
    Lang, Andrew
    Carass, Aaron
    Hauser, Matthew
    Sotirchos, Elias S.
    Calabresi, Peter A.
    Ying, Howard S.
    Prince, Jerry L.
    BIOMEDICAL OPTICS EXPRESS, 2013, 4 (07): : 1133 - 1152
  • [28] Interactive Deep Learning-Based Retinal OCT Layer Segmentation Refinement by Regressing Translation Maps
    Aresta, Guilherme
    Araujo, Teresa
    Fazekas, Botond
    Mai, Julia
    Schmidt-Erfurth, Ursula
    Bogunovic, Hrvoje
    IEEE ACCESS, 2024, 12 : 47009 - 47023
  • [29] Retinal Vessel Segmentation Through Denoising and Mathematical Morphology
    Savelli, Benedetta
    Marchesi, Agnese
    Bria, Alessandro
    Marrocco, Claudio
    Molinara, Mario
    Tortorella, Francesco
    IMAGE ANALYSIS AND PROCESSING (ICIAP 2017), PT II, 2017, 10485 : 267 - 276
  • [30] Optimal Retinal Cyst Segmentation from OCT Images
    Oguz, Ipek
    Zhang, Li
    Abramoff, Michael D.
    Sonka, Milan
    MEDICAL IMAGING 2016: IMAGE PROCESSING, 2016, 9784