Recurrent Self Fusion: Iterative Denoising for Consistent Retinal OCT Segmentation

被引:1
|
作者
Wei, Shuwen [1 ]
Liu, Yihao [1 ]
Bian, Zhangxing [1 ]
Wang, Yuli [2 ]
Zuo, Lianrui [1 ,3 ]
Calabresi, Peter A. [4 ]
Saidha, Shiv [4 ]
Prince, Jerry L. [1 ]
Carass, Aaron [1 ]
机构
[1] Johns Hopkins Univ, Dept Elect & Comp Engn, Baltimore, MD 21218 USA
[2] Johns Hopkins Univ, Sch Med, Dept Biomed Engn, Baltimore, MD 21287 USA
[3] NIA, NIH, Lab Behav Neurosci, Baltimore, MD 21224 USA
[4] Johns Hopkins Univ, Sch Med, Dept Neurol, Baltimore, MD 21287 USA
来源
OPHTHALMIC MEDICAL IMAGE ANALYSIS, OMIA 2023 | 2023年 / 14096卷
关键词
Optical coherence tomography; Denoise; Segmentation; MULTIPLE-SCLEROSIS; LAYER THICKNESS; IMAGES;
D O I
10.1007/978-3-031-44013-7_5
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Optical coherence tomography (OCT) is a valuable imaging technique in ophthalmology, providing high-resolution, cross-sectional images of the retina for early detection and monitoring of various retinal and neurological diseases. However, discrepancies in retinal layer thickness measurements among different OCT devices pose challenges for data comparison and interpretation, particularly in longitudinal analyses. This work introduces the idea of a recurrent self fusion (RSF) algorithm to address this issue. Our RSF algorithm, built upon the self fusion methodology, iteratively denoises retinal OCT images. A deep learning-based retinal OCT segmentation algorithm is employed for downstream analyses. A large dataset of paired OCT scans acquired on both a Spectralis and Cirrus OCT device are used for validation. The results demonstrate that the RSF algorithm effectively reduces speckle contrast and enhances the consistency of retinal OCT segmentation.
引用
收藏
页码:42 / 51
页数:10
相关论文
共 50 条
  • [1] Retinal OCT Denoising with Pseudo-Multimodal Fusion Network
    Hu, Dewei
    Malone, Joseph D.
    Atay, Yigit
    Tao, Yuankai K.
    Oguz, Ipek
    OPHTHALMIC MEDICAL IMAGE ANALYSIS, OMIA 2020, 2020, 12069 : 125 - 135
  • [2] Unsupervised Denoising of Retinal OCT with Diffusion Probabilistic Model
    Hu, Dewei
    Tao, Yuankai K.
    Oguz, Ipek
    MEDICAL IMAGING 2022: IMAGE PROCESSING, 2022, 12032
  • [3] Self-attention CNN for retinal layer segmentation in OCT
    Cao, Guogang
    Wu, Yan
    Peng, Zeyu
    Zhou, Zhilin
    Dai, Cuixia
    BIOMEDICAL OPTICS EXPRESS, 2024, 15 (03) : 1605 - 1617
  • [4] Automatic segmentation of OCT retinal boundaries using recurrent neural networks and graph search
    Kugelman, Jason
    Alonso-Caneiro, David
    Read, Scott A.
    Vincent, Stephen J.
    Collins, Michael J.
    BIOMEDICAL OPTICS EXPRESS, 2018, 9 (11): : 5759 - 5777
  • [5] An adaptive grid for graph-based segmentation in retinal OCT
    Lang, Andrew
    Carass, Aaron
    Calabresi, Peter A.
    Ying, Howard S.
    Prince, Jerry L.
    MEDICAL IMAGING 2014: IMAGE PROCESSING, 2014, 9034
  • [6] Real-time OCT image denoising using a self-fusion neural network
    Rico-Jimenez, Jose J.
    Hu, Dewei
    Tang, Eric M.
    Oguz, Ipek
    Tao, Yuankai K.
    BIOMEDICAL OPTICS EXPRESS, 2022, 13 (03): : 1398 - 1409
  • [7] Deep learning based retinal OCT segmentation
    Pekala, M.
    Joshi, N.
    Liu, T. Y. Alvin
    Bressler, N. M.
    DeBuc, D. Cabrera
    Burlina, P.
    COMPUTERS IN BIOLOGY AND MEDICINE, 2019, 114
  • [8] Local Self-Similar Solution of ADMM for Denoising of Retinal OCT Images
    Tajmirriahi, Mahnoosh
    Amini, Zahra
    Rabbani, Hossein
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2024, 73 : 1 - 8
  • [9] Segmentation of diabetic macular edema for retinal OCT images
    Chen, Minghui
    He, Jintao
    Jia, Wenyu
    Qin, Xianfu
    Chen, Zhongping
    OPTICS IN HEALTH CARE AND BIOMEDICAL OPTICS VIII, 2018, 10820
  • [10] OCT chorio-retinal segmentation with adversarial loss
    Kugelman, Jason
    Alonso-Caneiro, David
    Read, Scott A.
    Vincent, Stephen J.
    Collins, Michael J.
    2021 INTERNATIONAL CONFERENCE ON DIGITAL IMAGE COMPUTING: TECHNIQUES AND APPLICATIONS (DICTA 2021), 2021, : 396 - 403