STABILITY ANALYSIS OF A FRACTIONAL ORDER CORONAVIRUS(COVID-19) EPIDEMIC MODEL

被引:0
作者
Khuddush, M. [1 ]
Prasad, K. R. [2 ]
机构
[1] Dr Lankapalli Bullayya Coll, Dept Math, Resapuvanipalem 530013, Visakhapatnam, India
[2] Andhra Univ, Coll Sci & Technol, Dept Appl Math, Visakhapatnam 530003, India
来源
TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS | 2023年 / 13卷 / 04期
关键词
Coronavirus(COVID-19); Caputo fractional derivative; reproduction number; next-generation matrix; MATHEMATICAL-MODEL;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper a six-compartmental coronavirus(COVID-19) epidemic model is developed. We have divided the total population into five classes, namely susceptible, exposed, infected, treatment, recovered and the concentration of the coronavirus in the environment reservoir class. The basic reproduction number R-0 is calculated using the next-generation matrix method. The stability analysis of the model shows that the system is locally asymptotically stable at the disease-free equilibrium (DFE) epsilon(0) when R-0 < 1. When R-0 > 1, an endemic equilibrium epsilon* exists and the system becomes locally asymptotically stable at epsilon* under some conditions.
引用
收藏
页码:1446 / 1460
页数:15
相关论文
共 28 条
[1]   Some Qualitative Analyses of Neutral Functional Delay Differential Equation with Generalized Caputo Operator [J].
Boutiara, Abdellatif ;
Matar, Mohammed M. ;
Kaabar, Mohammed K. A. ;
Martinez, Francisco ;
Etemad, Sina ;
Rezapour, Shahram .
JOURNAL OF FUNCTION SPACES, 2021, 2021
[2]   A mathematical model of the evolution and spread of pathogenic coronaviruses from natural host to human host [J].
Bozkurt, Fatma ;
Yousef, Ali ;
Baleanu, Dumitru ;
Alzabut, Jehad .
CHAOS SOLITONS & FRACTALS, 2020, 138
[3]   Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type [J].
Diethelm, Kai .
ANALYSIS OF FRACTIONAL DIFFERENTIAL EQUATIONS: AN APPLICATION-ORIENTED EXPOSITION USING DIFFERENTIAL OPERATORS OF CAPUTO TYPE, 2010, 2004 :3-+
[4]  
dos Santos J. P. C., 2017, Proc. Ser. Braz. Soc. Appl. Comput. Math, V5, P1, DOI [10.5540/03.2017.005.01.0019, DOI 10.5540/03.2017.005.01.0019]
[5]  
El-Saka H.A.A, 2013, Math Sci Lett, V2, P195, DOI DOI 10.12785/MSL/020308
[6]   Human Coronaviruses: Insights into Environmental Resistance and Its Influence on the Development of New Antiseptic Strategies [J].
Geller, Chloe ;
Varbanov, Mihayl ;
Duval, Raphael E. .
VIRUSES-BASEL, 2012, 4 (11) :3044-3068
[7]   The stability of the positive solution for a fractional SIR model [J].
Guo, Yingjia .
INTERNATIONAL JOURNAL OF BIOMATHEMATICS, 2017, 10 (01)
[8]   The effect of vaccines on backward bifurcation in a fractional order HIV model [J].
Huo, Jingjing ;
Zhao, Hongyong ;
Zhu, Linhe .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2015, 26 :289-305
[9]  
Joseph T, 2020, International pulmonologists consensus on COVID-19
[10]   A mathematical model for the dynamics of SARS-CoV-2 virus using the Caputo-Fabrizio operator [J].
Khan, Tahir ;
Ullah, Roman ;
Zaman, Gul ;
Alzabut, Jehad .
MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2021, 18 (05) :6095-6116