Innovative Post-Processing for Complex Geometries and Inner Parts of 3D-Printed AlSi10Mg Devices

被引:0
作者
Calvet, Marti [1 ]
Domenech, Anna [1 ]
Vilaro, Sergi [1 ]
Meseguer, Toni [1 ]
Bautista, Lorenzo [1 ]
机构
[1] Leitat Technol Ctr, Surface Chem Area Appl Chem & Mat Dept, Terrassa 08225, Barcelona, Spain
关键词
post-process; chemical polishing; roughness; additive manufacturing; 3D printing; selective laser melting; MICROSTRUCTURE; FATIGUE; SURFACE; ROUGHNESS; BEHAVIOR; SLM;
D O I
10.3390/ma16217040
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A new technology consisting of new and sustainable chemical polishing treatment for aluminum components with complex shapes, such as heat exchangers, manifolds, busbars, aerospace devices, etc., manufactured by Additive Manufacturing (AM) technologies is described in this paper. This technology will contribute to the development of a more efficient manufacturing process driven by AM, reinforcing the main idea of AM, which is based on reducing the amount of material and achieving cost savings through smart and improved designs. The present study shows a significant reduction in the surface roughness of consolidated AlSi10Mg metal parts manufactured by the SLM technique after carrying out the new chemical polishing post-process investigated in this work. Roughness values have been measured by mechanical and optical profilometry. The results obtained demonstrate the effectiveness of the chemical polishing, decreasing the roughness by up to 40%, being a reproducible and repeatable post-process. The presence of smut as solid residues on such types of chemical treatments has been also analyzed with XRF and ICP-MS techniques. The results obtained show that Si and Mg precipitates are removed from the metal surface at the last step of the investigated post-process. The percentages of the elements decrease from 25.0% to 8.09% Si and from 0.86% to 0.42% Mg, achieving the alloy smut-free composition on the metal surface. Tensile strength measurements have shown that the post-process described not only maintains the mechanical properties of the bulk material but, in comparison with non-post-processed parts, a slight improvement is observed with respect to the initial values, Young modulus (61.1 GPa to final 62.2 GPa), yield strength (from 236.8 to 246.7 MPa), and tensile strength (from 371.9 to 382.5 MPa) is observed, suggesting that the post-process has positive impact on the printed metal part.
引用
收藏
页数:15
相关论文
共 42 条
[1]  
Altiparmak S.C., 2021, INT J LIGHT MAT MANU, V4, P246, DOI [10.1016/j.ijlmm.2020.12.004, DOI 10.1016/J.IJLMM.2020.12.004]
[2]  
[Anonymous], 2020, SURFACE TEXTURE SURF
[3]  
[Anonymous], 2019, 689212019 ISO
[4]  
astm, Standard Practice for Verification of Testing Frame and Specimen Alignment Under Tensile and Compressive Axial Force Application
[5]   State of the art on chemical and electrochemical based finishing processes for additive manufactured features [J].
Basha, M. M. ;
Basha, S. M. ;
Jain, V. K. ;
Sankar, M. R. .
ADDITIVE MANUFACTURING, 2022, 58
[6]  
Bhaduri Debajyoti, 2020, Procedia CIRP, V87, P339, DOI 10.1016/j.procir.2020.02.093
[7]   Additive manufactured AlSi10Mg samples using Selective Laser Melting (SLM): Microstructure, high cycle fatigue, and fracture behavior [J].
Brandl, Erhard ;
Heckenberger, Ulrike ;
Holzinger, Vitus ;
Buchbinder, Damien .
MATERIALS & DESIGN, 2012, 34 :159-169
[8]   Transition from pitting to fatigue crack growth - Modeling of corrosion fatigue crack nucleation in a 2024-T3 aluminum alloy [J].
Chen, GS ;
Wan, KC ;
Gao, M ;
Wei, RP ;
Flournoy, TH .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 1996, 219 (1-2) :126-132
[9]  
Clancy K., 2022, Javelin 3d Solut
[10]   Main defects observed in aluminum alloy parts produced by SLM: From causes to consequences [J].
Galy, Cassiopee ;
Le Guen, Emilie ;
Lacoste, Eric ;
Arvieu, Corinne .
ADDITIVE MANUFACTURING, 2018, 22 :165-175