Equilibrium Analysis for Electricity Market Considering Carbon Emission Trading Based on Multi-agent Deep Reinforcement Learning

被引:0
|
作者
Liu, Qiyuan [1 ]
Feng, Donghan [1 ]
Zhou, Yun [1 ]
Li, Hengjie [2 ]
Zhang, Kaiyu [3 ]
Shi, Shanshan [3 ]
机构
[1] Shanghai Jiao Tong Univ, Dept Elect Engn, Shanghai, Peoples R China
[2] Lanzhou Univ Technol, Sch Elect & Informat Engn, Lanzhou, Peoples R China
[3] State Grid Shanghai Municipal, Elect Power Res Inst, Shanghai, Peoples R China
来源
2023 IEEE/IAS INDUSTRIAL AND COMMERCIAL POWER SYSTEM ASIA, I&CPS ASIA | 2023年
基金
中国国家自然科学基金;
关键词
electricity market equilibrium; carbon emission trading; multi-agent deep reinforcement learning; carbon price; carbon quota;
D O I
10.1109/ICPSASIA58343.2023.10294544
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
With the proposal of China's carbon peaking and carbon neutrality goals, carbon emission trading (CET) is gradually participating in the electricity market to accelerate carbon emission reduction and the improvement of power supply structure. In this study, we analyze the impacts of CET on the electricity market based on the electricity market equilibrium model and multi-agent deep reinforcement learning (MADL) method. We firstly establish the electricity market clearing process involved CET and develop the bi-level problem to model the electricity market equilibrium with strategic generation company (GENCO) bidders. Then, a multi-agent Twin Delayed Deep Deterministic Policy Gradient (MATD3) algorithm is applied to solve the market equilibrium described above. Finally, we simulate multiple cases based on a modified IEEE 30-bus system. The result shows that an excessive carbon price can raise the nodal electricity price and have a negative influence on reducing carbon emission, and an appropriately low carbon emission quota setting can help for carbon emission reduction.
引用
收藏
页码:1849 / 1854
页数:6
相关论文
共 50 条
  • [41] A multi-agent deep reinforcement learning based energy management for behind-the-meter resources
    Wilk, Patrick
    Wang, Ning
    Li, Jie
    ELECTRICITY JOURNAL, 2022, 35 (05)
  • [42] Multi-agent Deep Reinforcement Learning Based Channel Allocation for Networked Satellite Telemetry System
    Zeng, Guanming
    Zhan, Yafeng
    Chen, Guanyu
    ICC 2023-IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, 2023, : 5539 - 5545
  • [43] Equilibrium Analysis of Electricity Market Considering Green Certificate and Carbon Quota Constraints in Stochastic Environment
    Chen, Quan
    Zhang, Danhong
    Hu, Yufan
    Li, Yang
    Yu, Da
    Zhu, Jianquan
    Gaodianya Jishu/High Voltage Engineering, 2024, 50 (12): : 5505 - 5515
  • [44] Multi-Agent Deep Reinforcement Learning for Resource Allocation in the Multi-Objective HetNet
    Nie, Hongrui
    Li, Shaosheng
    Liu, Yong
    IWCMC 2021: 2021 17TH INTERNATIONAL WIRELESS COMMUNICATIONS & MOBILE COMPUTING CONFERENCE (IWCMC), 2021, : 116 - 121
  • [45] Multi-Agent Deep Reinforcement Learning based Multi-Objective Resource Optimization in a Distributed Manufacturing System
    Shen, Xinchang
    Tham, Chen-Khong
    2024 IEEE 99TH VEHICULAR TECHNOLOGY CONFERENCE, VTC2024-SPRING, 2024,
  • [46] UAV-Enabled Secure Communications by Multi-Agent Deep Reinforcement Learning
    Zhang, Yu
    Mou, Zhiyu
    Gao, Feifei
    Jiang, Jing
    Ding, Ruijin
    Han, Zhu
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2020, 69 (10) : 11599 - 11611
  • [47] Distributed Multi-Agent Deep Reinforcement Learning for Robust Coordination against Noise
    Motokawa, Yoshinari
    Sugawara, Toshiharu
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [48] Multi-Agent Deep Reinforcement Learning for content caching within the Internet of Vehicles
    Knari, Anas
    Derfouf, Mostapha
    Koulali, Mohammed-Amine
    Khoumsi, Ahmed
    AD HOC NETWORKS, 2024, 152
  • [49] Multi-agent deep reinforcement learning for computation offloading in cooperative edge network
    Wu, Pengju
    Guan, Yepeng
    JOURNAL OF INTELLIGENT INFORMATION SYSTEMS, 2024, : 567 - 591
  • [50] Multi-Agent Deep Reinforcement Learning Method for EV Charging Station Game
    Qian, Tao
    Shao, Chengcheng
    Li, Xuliang
    Wang, Xiuli
    Chen, Zhiping
    Shahidehpour, Mohammad
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2022, 37 (03) : 1682 - 1694