Equilibrium Analysis for Electricity Market Considering Carbon Emission Trading Based on Multi-agent Deep Reinforcement Learning

被引:0
|
作者
Liu, Qiyuan [1 ]
Feng, Donghan [1 ]
Zhou, Yun [1 ]
Li, Hengjie [2 ]
Zhang, Kaiyu [3 ]
Shi, Shanshan [3 ]
机构
[1] Shanghai Jiao Tong Univ, Dept Elect Engn, Shanghai, Peoples R China
[2] Lanzhou Univ Technol, Sch Elect & Informat Engn, Lanzhou, Peoples R China
[3] State Grid Shanghai Municipal, Elect Power Res Inst, Shanghai, Peoples R China
来源
2023 IEEE/IAS INDUSTRIAL AND COMMERCIAL POWER SYSTEM ASIA, I&CPS ASIA | 2023年
基金
中国国家自然科学基金;
关键词
electricity market equilibrium; carbon emission trading; multi-agent deep reinforcement learning; carbon price; carbon quota;
D O I
10.1109/ICPSASIA58343.2023.10294544
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
With the proposal of China's carbon peaking and carbon neutrality goals, carbon emission trading (CET) is gradually participating in the electricity market to accelerate carbon emission reduction and the improvement of power supply structure. In this study, we analyze the impacts of CET on the electricity market based on the electricity market equilibrium model and multi-agent deep reinforcement learning (MADL) method. We firstly establish the electricity market clearing process involved CET and develop the bi-level problem to model the electricity market equilibrium with strategic generation company (GENCO) bidders. Then, a multi-agent Twin Delayed Deep Deterministic Policy Gradient (MATD3) algorithm is applied to solve the market equilibrium described above. Finally, we simulate multiple cases based on a modified IEEE 30-bus system. The result shows that an excessive carbon price can raise the nodal electricity price and have a negative influence on reducing carbon emission, and an appropriately low carbon emission quota setting can help for carbon emission reduction.
引用
收藏
页码:1849 / 1854
页数:6
相关论文
共 50 条
  • [21] Equilibrium Analysis of Electricity Market with Multi-Agents Considering Uncertainty
    Sun, Zhonghai
    Pi, Runyi
    Yang, Junjie
    Yang, Chao
    Chen, Xin
    ENERGIES, 2025, 18 (08)
  • [22] Residential demand response online optimization based on multi-agent deep reinforcement learning
    Yuan, Quan
    ELECTRIC POWER SYSTEMS RESEARCH, 2024, 237
  • [23] Ship cooperative collision avoidance strategy based on multi-agent deep reinforcement learning
    Sui L.-R.
    Gao S.
    He W.
    Kongzhi yu Juece/Control and Decision, 2023, 38 (05): : 1395 - 1402
  • [24] Peer-to-peer energy trading with energy trading consistency in interconnected multi-energy microgrids: A multi-agent deep reinforcement learning approach
    Cui, Yang
    Xu, Yang
    Wang, Yijian
    Zhao, Yuting
    Zhu, Han
    Cheng, Dingran
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2024, 156
  • [25] A Multi-Agent Deep Reinforcement Learning Framework for VWAP Strategy Optimization
    Ye, Jiaqi
    Li, Xiaodong
    Wang, Yingying
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [26] Multi-agent deep reinforcement learning based HVAC control for multi-zone buildings considering zone-energy-allocation optimization
    Xue, Wenping
    Jia, Ning
    Zhao, Mengtao
    ENERGY AND BUILDINGS, 2025, 329
  • [27] Multi-timescale voltage control for distribution system based on multi-agent deep reinforcement learning
    Wu, Zhi
    Li, Yiqi
    Gu, Wei
    Dong, Zengbo
    Zhao, Jingtao
    Liu, Weiliang
    Zhang, Xiao-Ping
    Liu, Pengxiang
    Sun, Qirun
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2023, 147
  • [28] Multi-agent deep reinforcement learning for dynamic reconfigurable shop scheduling considering batch processing and worker cooperation
    Li, Yuxin
    Li, Xinyu
    Gao, Liang
    Lu, Zhibing
    ROBOTICS AND COMPUTER-INTEGRATED MANUFACTURING, 2025, 91
  • [29] Multi-Agent Deep Reinforcement Learning for HVAC Control in Commercial Buildings
    Yu, Liang
    Sun, Yi
    Xu, Zhanbo
    Shen, Chao
    Yue, Dong
    Jiang, Tao
    Guan, Xiaohong
    IEEE TRANSACTIONS ON SMART GRID, 2021, 12 (01) : 407 - 419
  • [30] PowerNet: Multi-Agent Deep Reinforcement Learning for Scalable Powergrid Control
    Chen, Dong
    Chen, Kaian
    Li, Zhaojian
    Chu, Tianshu
    Yao, Rui
    Qiu, Feng
    Lin, Kaixiang
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2022, 37 (02) : 1007 - 1017