Equilibrium Analysis for Electricity Market Considering Carbon Emission Trading Based on Multi-agent Deep Reinforcement Learning

被引:0
|
作者
Liu, Qiyuan [1 ]
Feng, Donghan [1 ]
Zhou, Yun [1 ]
Li, Hengjie [2 ]
Zhang, Kaiyu [3 ]
Shi, Shanshan [3 ]
机构
[1] Shanghai Jiao Tong Univ, Dept Elect Engn, Shanghai, Peoples R China
[2] Lanzhou Univ Technol, Sch Elect & Informat Engn, Lanzhou, Peoples R China
[3] State Grid Shanghai Municipal, Elect Power Res Inst, Shanghai, Peoples R China
来源
2023 IEEE/IAS INDUSTRIAL AND COMMERCIAL POWER SYSTEM ASIA, I&CPS ASIA | 2023年
基金
中国国家自然科学基金;
关键词
electricity market equilibrium; carbon emission trading; multi-agent deep reinforcement learning; carbon price; carbon quota;
D O I
10.1109/ICPSASIA58343.2023.10294544
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
With the proposal of China's carbon peaking and carbon neutrality goals, carbon emission trading (CET) is gradually participating in the electricity market to accelerate carbon emission reduction and the improvement of power supply structure. In this study, we analyze the impacts of CET on the electricity market based on the electricity market equilibrium model and multi-agent deep reinforcement learning (MADL) method. We firstly establish the electricity market clearing process involved CET and develop the bi-level problem to model the electricity market equilibrium with strategic generation company (GENCO) bidders. Then, a multi-agent Twin Delayed Deep Deterministic Policy Gradient (MATD3) algorithm is applied to solve the market equilibrium described above. Finally, we simulate multiple cases based on a modified IEEE 30-bus system. The result shows that an excessive carbon price can raise the nodal electricity price and have a negative influence on reducing carbon emission, and an appropriately low carbon emission quota setting can help for carbon emission reduction.
引用
收藏
页码:1849 / 1854
页数:6
相关论文
共 50 条
  • [1] Explainable Deep Reinforcement Learning for Multi-Agent Electricity Market Simulations
    Miskiw, Kim K.
    Staudt, Philipp
    2024 20TH INTERNATIONAL CONFERENCE ON THE EUROPEAN ENERGY MARKET, EEM 2024, 2024,
  • [2] Optimal Investment Strategy for Wind Power under Electricity-carbon-green Certificate Trading: Based on Multi-agent Deep Reinforcement Learning
    Li, Xiaogang
    Feng, Yuanhao
    Wu, Min
    Chen, Zhongyang
    Zhou, Yun
    Feng, Donghan
    2023 IEEE/IAS INDUSTRIAL AND COMMERCIAL POWER SYSTEM ASIA, I&CPS ASIA, 2023, : 1855 - 1860
  • [3] Lenient Multi-Agent Deep Reinforcement Learning
    Palmer, Gregory
    Tuyls, Karl
    Bloembergen, Daan
    Savani, Rahul
    PROCEEDINGS OF THE 17TH INTERNATIONAL CONFERENCE ON AUTONOMOUS AGENTS AND MULTIAGENT SYSTEMS (AAMAS' 18), 2018, : 443 - 451
  • [4] Analysis of coordinated behavior structures with multi-agent deep reinforcement learning
    Yuki Miyashita
    Toshiharu Sugawara
    Applied Intelligence, 2021, 51 : 1069 - 1085
  • [5] Analysis of coordinated behavior structures with multi-agent deep reinforcement learning
    Miyashita, Yuki
    Sugawara, Toshiharu
    APPLIED INTELLIGENCE, 2021, 51 (02) : 1069 - 1085
  • [6] Wind power investment equilibrium guided by reliability option considering electricity-carbon emission trading-trading green certificate joint market
    Feng, Yuanhao
    Liu, Qiyuan
    Feng, Donghan
    Zhou, Yun
    SUSTAINABLE ENERGY GRIDS & NETWORKS, 2024, 37
  • [7] Distributed Task Offloading based on Multi-Agent Deep Reinforcement Learning
    Hu, Shucheng
    Ren, Tao
    Niu, Jianwei
    Hu, Zheyuan
    Xing, Guoliang
    2021 17TH INTERNATIONAL CONFERENCE ON MOBILITY, SENSING AND NETWORKING (MSN 2021), 2021, : 575 - 583
  • [8] Distributed interference coordination based on multi-agent deep reinforcement learning
    Liu T.
    Luo Y.
    Yang C.
    Tongxin Xuebao/Journal on Communications, 2020, 41 (07): : 38 - 48
  • [9] Strategic Interaction Multi-Agent Deep Reinforcement Learning
    Zhou, Wenhong
    Li, Jie
    Chen, Yiting
    Shen, Lin-Cheng
    IEEE ACCESS, 2020, 8 : 119000 - 119009
  • [10] Competitive Evolution Multi-Agent Deep Reinforcement Learning
    Zhou, Wenhong
    Chen, Yiting
    Li, Jie
    PROCEEDINGS OF THE THIRD INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND APPLICATION ENGINEERING (CSAE2019), 2019,