Bio-inspired enhancement for optical detection of drones using convolutional neural networks

被引:1
|
作者
Luesutthiviboon, Salil [1 ]
de Croon, Guido C. H. E. [1 ]
Altena, Anique V. N. [1 ]
Snellen, Mirjam [1 ]
Voskuijl, Mark [2 ]
机构
[1] Delft Univ Technol, Fac Aerosp Engn, Kluyverweg 1, NL-2629 HS Delft, Netherlands
[2] Netherlands Def Acad, Fac Mil Sci, Nieuwe Diep 8, NL-1781 AC Den Helder, Netherlands
来源
ARTIFICIAL INTELLIGENCE FOR SECURITY AND DEFENCE APPLICATIONS | 2023年 / 12742卷
关键词
Drone; Detection; Infrared Camera; Convolutional Neural Network; Machine Learning; Bio-Inspired; TRACKING;
D O I
10.1117/12.2673788
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Threats posed by drones urge defence sectors worldwide to develop drone detection systems. Visible-light and infrared cameras complement other sensors in detecting and identifying drones. Application of Convolutional Neural Networks (CNNs), such as the You Only Look Once (YOLO) algorithm, are known to help detect drones in video footage captured by the cameras quickly, and to robustly differentiate drones from other flying objects such as birds, thus avoiding false positives. However, using still video frames for training the CNN may lead to low drone-background contrast when it is flying in front of clutter, and omission of useful temporal data such as the flight trajectory. This deteriorates the drone detection performance, especially when the distance to the target increases. This work proposes to pre-process the video frames using a Bio-Inspired Vision (BIV) model of insects, and to concatenate the pre-processed video frame with the still frame as input for the CNN. The BIV model uses information from preceding frames to enhance the moving target-to-background contrast and embody the target's recent trajectory in the input frames. An open benchmark dataset containing infrared videos of small drones (< 25 kg) and other flying objects is used to train and test the proposed methodology. Results show that, at a high sensor-to-target distance, the YOLO algorithms trained on BIV-processed frames and concatenation of the BIV-processed frames with still frames increase the Average Precision (AP) to 0.92 and 0.88, respectively, compared to 0.83 when it is trained on still frames alone.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] Accurate lithography hotspot detection using deep convolutional neural networks
    Shin, Moojoon
    Lee, Jee-Hyong
    JOURNAL OF MICRO-NANOLITHOGRAPHY MEMS AND MOEMS, 2016, 15 (04):
  • [42] Bio-Inspired Multi-Scale Contourlet Attention Networks
    Liu, Mengkun
    Jiao, Licheng
    Liu, Xu
    Li, Lingling
    Liu, Fang
    Yang, Shuyuan
    Zhang, Xiangrong
    IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 2824 - 2837
  • [43] Detection of Multiple Sclerosis Using Convolutional Neural Networks: A Comparative Study
    Afifi, Nahla
    Abdel-Hamid, Amr Talaat
    Abdullah, Bassem A.
    2023 10TH INTERNATIONAL CONFERENCE ON SOFT COMPUTING & MACHINE INTELLIGENCE, ISCMI, 2023, : 77 - 80
  • [44] A Method for Deepfake Detection Using Convolutional Neural Networks
    Volkova, S. S.
    SCIENTIFIC AND TECHNICAL INFORMATION PROCESSING, 2023, 50 (05) : 475 - 485
  • [45] Crack Detection in Paintings Using Convolutional Neural Networks
    Sizyakin, Roman
    Cornelis, Bruno
    Meeus, Laurens
    Dubois, Helene
    Martens, Maximiliaan
    Voronin, Viacheslav
    Pizurica, Aleksandra
    IEEE ACCESS, 2020, 8 : 74535 - 74552
  • [46] Fish Detection and Classification Using Convolutional Neural Networks
    Rekha, B. S.
    Srinivasan, G. N.
    Reddy, Sravan Kumar
    Kakwani, Divyanshu
    Bhattad, Niraj
    COMPUTATIONAL VISION AND BIO-INSPIRED COMPUTING, 2020, 1108 : 1221 - 1231
  • [47] Objects detection and recognition system using artificial neural networks and drones
    Pietrow, Dymitr
    Matuszewski, Jan
    2017 SIGNAL PROCESSING SYMPOSIUM (SPSYMPO), 2017,
  • [48] Fingerprint Liveness Detection Using Convolutional Neural Networks
    Nogueira, Rodrigo Frassetto
    Lotufo, Roberto de Alencar
    Machado, Rubens Campos
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2016, 11 (06) : 1206 - 1213
  • [49] System impairment compensation in coherent optical communications by using a bio-inspired detector based on artificial neural network and genetic algorithm
    Wang, Danshi
    Zhang, Min
    Li, Ze
    Song, Chuang
    Fu, Meixia
    Li, Jin
    Chen, Xue
    OPTICS COMMUNICATIONS, 2017, 399 : 1 - 12
  • [50] Periodontal Disease Detection Using Convolutional Neural Networks
    Joo, Jaehan
    Jeong, Sinjin
    Jin, Heetae
    Lee, Uhyeon
    Yoon, Ji Young
    Kim, Suk Chan
    2019 1ST INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE IN INFORMATION AND COMMUNICATION (ICAIIC 2019), 2019, : 360 - 362