Generating Fingerings for Piano Music with Model-Based Reinforcement Learning

被引:1
作者
Gao, Wanxiang [1 ]
Zhang, Sheng [1 ]
Zhang, Nanxi [2 ]
Xiong, Xiaowu [1 ]
Shi, Zhaojun [1 ]
Sun, Ka [1 ]
机构
[1] Nanchang Hangkong Univ, Sch Informat Engn, 696 Fenghe South Ave, Nanchang 330063, Peoples R China
[2] UCL, Inst Educ, Gower St, London WC1E 6BT, England
来源
APPLIED SCIENCES-BASEL | 2023年 / 13卷 / 20期
关键词
piano fingering model; reinforcement learning; symbolic music processing; combinatorial optimization;
D O I
10.3390/app132011321
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The piano fingering annotation task refers to assigning finger labels to notes in piano sheet music. Good fingering helps improve the smoothness and musicality of piano performance. In this paper, we propose a method for automatically generating piano fingering using a model-based reinforcement learning algorithm. We treat fingering annotation as a partial constraint combinatorial optimization problem and establish an environment model for the piano performance process based on prior knowledge. We design a reward function based on the principle of minimal motion and use reinforcement learning algorithms to decide the optimal fingering combinations. Our innovation lies in establishing a more realistic environment model and adopting a model-based reinforcement learning approach, compared to model-free methods, to enhance the utilization of samples. We also propose a music score segmentation method to parallelize the fingering annotation task. The experimental section shows that our method achieves good results in eliminating physically impossible fingerings and reducing the amount of finger motion required in piano performance.
引用
收藏
页数:16
相关论文
共 23 条
[1]  
Balliauw Matteo, 2015, Mathematics and Computation in Music. 5th International Conference, MCM 2015. Proceedings: LNCS 9110, P149, DOI 10.1007/978-3-319-20603-5_15
[2]   A variable neighborhood search algorithm to generate piano fingerings for polyphonic sheet music [J].
Balliauw, Matteo ;
Herremans, Dorien ;
Cuervo, Daniel Palhazi ;
Sorensen, Kenneth .
INTERNATIONAL TRANSACTIONS IN OPERATIONAL RESEARCH, 2017, 24 (03) :509-535
[3]  
Cuthbert Michael Scott, 2021, MUSIC21 TOOLKIT COMP
[4]  
Datseris G., 2019, J. Open Source Softw, V4, P1166, DOI [10.21105/joss.01166, DOI 10.21105/JOSS.01166]
[5]  
Egorov M, 2017, J MACH LEARN RES, V18
[6]   Estimation of playable piano fingering by pitch-difference fingering match model [J].
Guan, Xin ;
Zhao, Haoyue ;
Li, Qiang .
EURASIP JOURNAL ON AUDIO SPEECH AND MUSIC PROCESSING, 2022, 2022 (01)
[7]  
Hart M., 2000, UMAP J, V2, P167
[8]  
Koornstra T., 2021, Bachelor Thesis
[9]   Reinforcement learning for combinatorial optimization: A survey [J].
Mazyavkina, Nina ;
Sviridov, Sergey ;
Ivanov, Sergei ;
Burnaev, Evgeny .
COMPUTERS & OPERATIONS RESEARCH, 2021, 134
[10]   Human-level control through deep reinforcement learning [J].
Mnih, Volodymyr ;
Kavukcuoglu, Koray ;
Silver, David ;
Rusu, Andrei A. ;
Veness, Joel ;
Bellemare, Marc G. ;
Graves, Alex ;
Riedmiller, Martin ;
Fidjeland, Andreas K. ;
Ostrovski, Georg ;
Petersen, Stig ;
Beattie, Charles ;
Sadik, Amir ;
Antonoglou, Ioannis ;
King, Helen ;
Kumaran, Dharshan ;
Wierstra, Daan ;
Legg, Shane ;
Hassabis, Demis .
NATURE, 2015, 518 (7540) :529-533