Remote Sensing Monitoring of Drought in Southwest China Using Random Forest and eXtreme Gradient Boosting Methods

被引:7
|
作者
Li, Xiehui [1 ,2 ,3 ]
Jia, Hejia [1 ,4 ]
Wang, Lei [1 ]
机构
[1] Chengdu Univ Informat Technol, Sch Atmospher Sci, Chengdu 610225, Peoples R China
[2] Chengdu Univ Informat Technol, Yunnan R&D Inst Nat Disaster, Kunming 650034, Peoples R China
[3] China Meteorol Adm, Lanzhou Inst Arid Meteorol, Key Lab Arid Climat Change & Reducing Disaster Gan, Key Open Lab Arid Climate Change & Disaster Reduct, Lanzhou 730020, Peoples R China
[4] Xianning Meteorol Serv, Xianning 437000, Peoples R China
关键词
drought index; drought monitoring; RF model; XGBoost model; multisource remote sensing information; southwest China; MACHINE LEARNING ALGORITHMS; VEGETATION INDEX; SATELLITE DATA; PREDICTION; VALIDATION; CLIMATE; MODEL; CLASSIFICATION; RAINFALL; MOISTURE;
D O I
10.3390/rs15194840
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
A drought results from the combined action of several factors. The continuous progress of remote sensing technology and the rapid development of artificial intelligence technology have enabled the use of multisource remote sensing data and data-driven machine learning (ML) methods to mine drought features from different perspectives. This method improves the generalization ability and accuracy of drought monitoring and prediction models. The present study focused on drought monitoring in southwest China, where drought disasters occur frequently and with a high intensity, especially in areas with limited meteorological station coverage. Several drought indices were calculated based on multisource satellite remote sensing data and weather station observation data. Remote sensing data from multiple sources were combined to build a reconstructed land surface temperature (LST) and drought monitoring method using the two different ML methods of random forest (RF) and eXtreme Gradient Boosting (XGBoost 1.5.1), respectively. A 5-fold cross-validation (CV) method was used for the model's hyperparameter optimization and accuracy evaluation. The performance of the model was also assessed and validated using several accuracy assessment indicators. The model monitored the results of the spatial and temporal distributions of the drought, drought grades, and influence scope of the drought. These results from the model were compared against historical drought situations and those based on the standardized precipitation evapotranspiration index (SPEI) and the meteorological drought composite index (MCI) values estimated using weather station observation data in southwest China. The results show that the average score of the 5-fold CV for the RF and XGBoost was 0.955 and 0.931, respectively. The root-mean-square error (RMSE) of the LST values reconstructed using the RF model on the training and test sets was 1.172 and 2.236, the mean absolute error (MAE) was 0.847 and 1.719, and the explained variance score (EVS) was 0.901 and 0.858, respectively. Furthermore, the correlation coefficients (CCs) were all greater than 0.9. The RMSE of the monitoring values using the XGBoost model on the training and test sets was 0.135 and 0.435, the MAE was 0.095 and 0.328, the EVS was 0.976 and 0.782, and the CC was 0.982 and 0.868, respectively. The consistency rate between the drought grades identified using SPEI1 (the SPEI values of the 1-month scale) based on the observed data from the 144 meteorological stations and the monitoring values from the XGBoost model was more than 85%. The overall consistency rate between the drought grades identified using the monitoring and MCI values was 67.88%. The aforementioned two different ML methods achieved a high comprehensive performance, accuracy, and applicability. The constructed model can improve the level of dynamic drought monitoring and prediction for regions with complex terrain and topography and formative factors of climate as well as where weather stations are sparsely distributed.
引用
收藏
页数:26
相关论文
共 50 条
  • [1] Monitoring Southwest drought of China using HJ-1A/B and Landsat remote sensing data
    Huang, He
    Zhou, Hongjian
    Wang, Ping
    Wu, Wei
    Yang, Siquan
    LAND SURFACE REMOTE SENSING, 2012, 8524
  • [2] Detecting Forest Fires in Southwest China From Remote Sensing Nighttime Lights Using the Random Forest Classification Model
    Yu, Yuehan
    Liu, Lili
    Chang, Zhijian
    Li, Yuanqing
    Shi, Kaifang
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 10759 - 10769
  • [3] Difference Analysis of SPEI and Vegetation Remote Sensing Information in Drought Monitoring in Southwest China
    Shi X.
    Wu M.
    Ding H.
    Nongye Jixie Xuebao/Transactions of the Chinese Society for Agricultural Machinery, 2020, 51 (12): : 184 - 192
  • [4] Implementation of random forest, adaptive boosting, and gradient boosting decision trees algorithms for gully erosion susceptibility mapping using remote sensing and GIS
    Hassan Ait Naceur
    Hazem Ghassan Abdo
    Brahim Igmoullan
    Mustapha Namous
    Fahad Alshehri
    Jasem A Albanai
    Environmental Earth Sciences, 2024, 83
  • [5] Implementation of random forest, adaptive boosting, and gradient boosting decision trees algorithms for gully erosion susceptibility mapping using remote sensing and GIS
    Naceur, Hassan Ait
    Abdo, Hazem Ghassan
    Igmoullan, Brahim
    Namous, Mustapha
    Alshehri, Fahad
    Albanai, Jasem A.
    ENVIRONMENTAL EARTH SCIENCES, 2024, 83 (03)
  • [6] Combination of multi-sensor remote sensing data for drought monitoring over Southwest China
    Hao, Cui
    Zhang, Jiahua
    Yao, Fengmei
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2015, 35 : 270 - 283
  • [7] A review of drought monitoring using remote sensing and data mining methods
    Inoubli, Raja
    Ben Abbes, Ali
    Farah, Imed Riadh
    Singh, Vijay
    Tadesse, Tsegaye
    Sattari, Mohammad Taghi
    2020 5TH INTERNATIONAL CONFERENCE ON ADVANCED TECHNOLOGIES FOR SIGNAL AND IMAGE PROCESSING (ATSIP'2020), 2020,
  • [8] Monitoring Meteorological Drought in Southern China Using Remote Sensing Data
    Liu, Li
    Huang, Ran
    Cheng, Jiefeng
    Liu, Weiwei
    Chen, Yan
    Shao, Qi
    Duan, Dingding
    Wei, Pengliang
    Chen, Yuanyuan
    Huang, Jingfeng
    REMOTE SENSING, 2021, 13 (19)
  • [9] Prediction of flood sensitivity based on Logistic Regression, eXtreme Gradient Boosting, and Random Forest modeling methods
    Wu, Ying
    Zhang, Zhiming
    Qi, Xiaotian
    Hu, Wenhan
    Si, Shuai
    WATER SCIENCE AND TECHNOLOGY, 2024, 89 (10) : 2605 - 2624
  • [10] STUDY ON REMOTE SENSING MONITORING MODEL OF AGRICULTURAL DROUGHT BASED ON RANDOM FOREST DEVIATION CORRECTION
    Li, Shao
    Xu, Xia
    INMATEH-AGRICULTURAL ENGINEERING, 2021, 64 (02): : 413 - 422