BioSTD: A New Tensor Multi-View Framework via Combining Tensor Decomposition and Strong Complementarity Constraint for Analyzing Cancer Omics Data

被引:3
作者
Gao, Ying-Lian [1 ]
Qiao, Qian [2 ]
Wang, Juan [2 ]
Yuan, Sha-Sha [2 ]
Liu, Jin-Xing [2 ]
机构
[1] Qufu Normal Univ, Qufu Normal Univ Lib, Rizhao 276826, Shandong, Peoples R China
[2] Qufu Normal Univ, Sch Comp Sci, Rizhao 276826, Shandong, Peoples R China
基金
中国国家自然科学基金;
关键词
Multi-view framework; omics data; strong complementarity constraint; tensor decomposition; GENES; COMPLETION;
D O I
10.1109/JBHI.2023.3299274
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Advances in omics technology have enriched the understanding of the biological mechanisms of diseases, which has provided a new approach for cancer research. Multi-omics data contain different levels of cancer information, and comprehensive analysis of them has attracted wide attention. However, limited by the dimensionality of matrix models, traditional methods cannot fully use the key high-dimensional global structure of multi-omics data. Moreover, besides global information, local features within each omics are also critical. It is necessary to consider the potential local information together with the high-dimensional global information, ensuring that the shared and complementary features of the omics data are comprehensively observed. In view of the above, this article proposes a new tensor integrative framework called the strong complementarity tensor decomposition model (BioSTD) for cancer multi-omics data. It is used to identify cancer subtype specific genes and cluster subtype samples. Different from the matrix framework, BioSTD utilizes multi-view tensors to coordinate each omics to maximize high-dimensional spatial relationships, which jointly considers the different characteristics of different omics data. Meanwhile, we propose the concept of strong complementarity constraint applicable to omics data and introduce it into BioSTD. Strong complementarity is used to explore the potential local information, which can enhance the separability of different subtypes, allowing consistency and complementarity in the omics data to be fully represented. Experimental results on real cancer datasets show that our model outperforms other advanced models, which confirms its validity.
引用
收藏
页码:5187 / 5198
页数:12
相关论文
共 54 条
[1]   Comprehensive molecular characterization of gastric adenocarcinoma [J].
Bass, Adam J. ;
Thorsson, Vesteinn ;
Shmulevich, Ilya ;
Reynolds, Sheila M. ;
Miller, Michael ;
Bernard, Brady ;
Hinoue, Toshinori ;
Laird, Peter W. ;
Curtis, Christina ;
Shen, Hui ;
Weisenberger, Daniel J. ;
Schultz, Nikolaus ;
Shen, Ronglai ;
Weinhold, Nils ;
Keiser, David P. ;
Bowlby, Reanne ;
Sipahimalani, Payal ;
Cherniack, Andrew D. ;
Getz, Gad ;
Liu, Yingchun ;
Noble, Michael S. ;
Pedamallu, Chandra ;
Sougnez, Carrie ;
Taylor-Weiner, Amaro ;
Akbani, Rehan ;
Lee, Ju-Seog ;
Liu, Wenbin ;
Mills, Gordon B. ;
Yang, Da ;
Zhang, Wei ;
Pantazi, Angeliki ;
Parfenov, Michael ;
Gulley, Margaret ;
Piazuelo, M. Blanca ;
Schneider, Barbara G. ;
Kim, Jihun ;
Boussioutas, Alex ;
Sheth, Margi ;
Demchok, John A. ;
Rabkin, Charles S. ;
Willis, Joseph E. ;
Ng, Sam ;
Garman, Katherine ;
Beer, David G. ;
Pennathur, Arjun ;
Raphael, Benjamin J. ;
Wu, Hsin-Ta ;
Odze, Robert ;
Kim, Hark K. ;
Bowen, Jay .
NATURE, 2014, 513 (7517) :202-209
[2]   Role of genomic instability in arsenic-induced carcinogenicity. A review [J].
Bhattacharjee, Pritha ;
Banerjee, Mayukh ;
Giri, Ashok K. .
ENVIRONMENT INTERNATIONAL, 2013, 53 :29-40
[3]   Robust Principal Component Analysis? [J].
Candes, Emmanuel J. ;
Li, Xiaodong ;
Ma, Yi ;
Wright, John .
JOURNAL OF THE ACM, 2011, 58 (03)
[4]  
Chen CF, 2012, PROC CVPR IEEE, P2618, DOI 10.1109/CVPR.2012.6247981
[5]   Multiview Subspace Clustering Using Low-Rank Representation [J].
Chen, Jie ;
Yang, Shengxiang ;
Mao, Hua ;
Fahy, Conor .
IEEE TRANSACTIONS ON CYBERNETICS, 2022, 52 (11) :12364-12378
[6]   Antigen Presentation Machinery Signature-Derived CALR Mediates Migration, Polarization of Macrophages in Glioma and Predicts Immunotherapy Response [J].
Chen, Rui ;
Zhang, Hao ;
Wu, Wantao ;
Li, Shuyu ;
Wang, Zeyu ;
Dai, Ziyu ;
Liu, Zaoqu ;
Zhang, Jian ;
Luo, Peng ;
Xia, Zhiwei ;
Cheng, Quan .
FRONTIERS IN IMMUNOLOGY, 2022, 13
[7]   Harnessing Structures in Big Data via Guaranteed Low-Rank Matrix Estimation Recent theory and fast algorithms via convex and nonconvex optimization [J].
Chen, Yudong ;
Chi, Yuejie .
IEEE SIGNAL PROCESSING MAGAZINE, 2018, 35 (04) :14-31
[8]   TCGAbiolinks: an R/Bioconductor package for integrative analysis of TCGA data [J].
Colaprico, Antonio ;
Silva, Tiago C. ;
Olsen, Catharina ;
Garofano, Luciano ;
Cava, Claudia ;
Garolini, Davide ;
Sabedot, Thais S. ;
Malta, Tathiane M. ;
Pagnotta, Stefano M. ;
Castiglioni, Isabella ;
Ceccarelli, Michele ;
Bontempi, Gianluca ;
Noushmehr, Houtan .
NUCLEIC ACIDS RESEARCH, 2016, 44 (08) :e71
[9]   DNA methylation signatures associated with prognosis of gastric cancer [J].
Dai, Jin ;
Nishi, Akihiro ;
Li, Zhe-Xuan ;
Zhang, Yang ;
Zhou, Tong ;
You, Wei-Cheng ;
Li, Wen-Qing ;
Pan, Kai-Feng .
BMC CANCER, 2021, 21 (01)
[10]   Low-rank local tangent space embedding for subspace clustering [J].
Deng, Tingquan ;
Ye, Dongsheng ;
Ma, Rong ;
Fujita, Hamido ;
Xiong, Lvnan .
INFORMATION SCIENCES, 2020, 508 :1-21