The most general structure of graphs with hamiltonian or hamiltonian connected square

被引:0
作者
Ekstein, Jan [1 ,2 ]
Fleischner, Herbert [3 ]
机构
[1] Univ West Bohemia, Fac Appl Sci, Dept Math, Tech 8, Plzen 30614, Czech Republic
[2] Univ West Bohemia, Fac Appl Sci, European Ctr Excellence NTIS New Technol Informat, Tech 8, Plzen 30614, Czech Republic
[3] Vienna Univ Technol, Inst L & Computat, Algorithms & Complex Grp, Favoritenstr 9-11, A-1040 Vienna, Austria
关键词
Hamiltonian cycle; Hamiltonian path; Block-cutvertex graph; Square of a graph; SHORT PROOF; BLOCK; THEME;
D O I
10.1016/j.disc.2023.113702
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
On the basis of recent results on hamiltonicity, [5], and hamiltonian connectedness, [9], in the square of a 2-block, we determine the most general block-cutvertex structure a graph G may have in order to guarantee that G2 is hamiltonian, hamiltonian connected, respectively. Such an approach was already developed in [10] for hamiltonian total graphs.(c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:9
相关论文
共 13 条
[11]   A short proof of Fleischner's theorem [J].
Georgakopoulos, Agelos .
DISCRETE MATHEMATICS, 2009, 309 (23-24) :6632-6634
[12]   A short proof of the versatile version of Fleischner's theorem [J].
Muettel, Janina ;
Rautenbach, Dieter .
DISCRETE MATHEMATICS, 2013, 313 (19) :1929-1933
[13]  
RIHA S, 1991, J COMB THEORY B, V52, P117, DOI 10.1016/0095-8956(91)90098-5