The most general structure of graphs with hamiltonian or hamiltonian connected square

被引:0
作者
Ekstein, Jan [1 ,2 ]
Fleischner, Herbert [3 ]
机构
[1] Univ West Bohemia, Fac Appl Sci, Dept Math, Tech 8, Plzen 30614, Czech Republic
[2] Univ West Bohemia, Fac Appl Sci, European Ctr Excellence NTIS New Technol Informat, Tech 8, Plzen 30614, Czech Republic
[3] Vienna Univ Technol, Inst L & Computat, Algorithms & Complex Grp, Favoritenstr 9-11, A-1040 Vienna, Austria
关键词
Hamiltonian cycle; Hamiltonian path; Block-cutvertex graph; Square of a graph; SHORT PROOF; BLOCK; THEME;
D O I
10.1016/j.disc.2023.113702
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
On the basis of recent results on hamiltonicity, [5], and hamiltonian connectedness, [9], in the square of a 2-block, we determine the most general block-cutvertex structure a graph G may have in order to guarantee that G2 is hamiltonian, hamiltonian connected, respectively. Such an approach was already developed in [10] for hamiltonian total graphs.(c) 2023 Elsevier B.V. All rights reserved.
引用
收藏
页数:9
相关论文
共 13 条
[1]  
Alstrup S, 2018, SODA'18: PROCEEDINGS OF THE TWENTY-NINTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, P1645
[2]  
BONDY J. A., 2008, GTM, V244, DOI DOI 10.1007/978-1-84628-970-5
[3]   Revisiting the Hamiltonian theme in the square of a block: the case of DT-graphs [J].
Chia, Gek L. ;
Ekstein, Jan ;
Fleischner, Herbert .
JOURNAL OF COMBINATORICS, 2018, 9 (01) :119-161
[4]   On graphs whose square have strong hamiltonian properties [J].
Chia, Gek L. ;
Ong, Siew-Hui ;
Tan, Li Y. .
DISCRETE MATHEMATICS, 2009, 309 (13) :4608-4613
[5]   A best possible result for the square of a 2-block to be hamiltonian [J].
Ekstein, Jan ;
Fleischner, Herbert .
DISCRETE MATHEMATICS, 2021, 344 (01)
[6]  
Fleischner H., 1974, Journal of Combinatorial Theory, Series B, V16, P29, DOI 10.1016/0095-8956(74)90091-4
[7]  
Fleischner H., 1974, Journal of Combinatorial Theory, Series B, V16, P17, DOI 10.1016/0095-8956(74)90090-2
[8]   HAMILTONIAN TOTAL GRAPHS [J].
FLEISCHNER, H ;
HOBBS, AM .
MATHEMATISCHE NACHRICHTEN, 1975, 68 :59-82
[9]   SQUARE OF GRAPHS, HAMILTONICITY AND PANCYCLICITY, HAMILTONIAN CONNECTEDNESS AND PANCONNECTEDNESS ARE EQUIVALENT CONCEPTS [J].
FLEISCHNER, H .
MONATSHEFTE FUR MATHEMATIK, 1976, 82 (02) :125-149
[10]  
Fleischner H, 2019, J COMB, V10, P163