Ru-doped TiO2 compact layer was deposited on conducting substrate fluorine-doped tin oxide electrode by hydrothermal technique for dye-sensitized solar cell application. The solar cell's characteristics such as open circuit voltage, current density-voltage (J-V) characteristics, and electrochemical impedance spectra, showed that Ruthenium when doped into bare TiO2 acts as a blocking layer that reduces the charge recombination from the transparent conducting oxide layer. Here, we have synthesized bare and Ru-doped TiO2 by a hydrothermal method for dye sensitized solar cell application. Recently, the research of the DSSCs has advanced by leaps and bounds, especially in the field of pursuing a cost-effective solution process with high power conversion efficiency. Nanorods are efficient electron transport layers with a high surface area. The nanorods were characterized by various techniques, such as X-ray powder diffraction, scanning electron microscopy, UV-Visible spectroscopy, Raman spectroscopy, solar cell characterization, and impedance spectroscopy. The impedance study provides detailed information about the recombination losses at various interfaces. It is observed that there is a 20% increase in photovoltaic performance after 3% Ru doping in TiO2. The efficiency received for 3% Ru doped TiO2 layers was obtained to be 3.54% which increases the charge transfer and collection capacity of the solar cell. It also affects the morphology of compact layer 3% Ru doped TiO2 well-aligned nanorods are observed on doping of 3% ruthenium into TiO2. Results show that Ru-doped TiO2 can be an alternative to the bare TiO2 compact layer to obtain efficient solar cells.