PBSNet: pseudo bilateral segmentation network for real-time semantic segmentation

被引:0
|
作者
Luo, Hui-Lan [1 ]
Liu, Chun-Yan [1 ]
Mahmoodi, Soroosh [2 ]
机构
[1] Jiangxi Univ Sci & Technol, Sch Informat Engn, Ganzhou, Peoples R China
[2] Yancheng Teachers Univ, Yancheng, Peoples R China
基金
中国国家自然科学基金;
关键词
real-time semantic segmentation; spatial and semantic features; attention mechanism; feature aggregation;
D O I
10.1117/1.JEI.32.4.043033
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Achieving real-time performance while maintaining high accuracy in semantic segmentation can be a challenging task. Many existing methods adopt multi-branch architectures to extract both spatial and semantic information, resulting in increased computational complexity and a lack of communication between branches. We propose a pseudo bilateral segmentation network (PBSNet) that can extract rich spatial and semantic features from a single path, without incurring additional computational cost or time consumption. Our proposed PBSNet utilizes a semantic enhancement module to explore the relationship between high-level semantic features, an interchange module to enhance feature representation through bi-directional vertical propagation and adaptive spatial attention, and an attention fusion module to aggregate multi-scale features to produce the final segmentation prediction. Our results on the Cityscapes dataset demonstrate the superiority of PBSNet over state-of-the-art methods, achieving a balance of accuracy and efficiency with 74.52% mean intersection over union and 82.5 frames per second.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] A lightweight network with attention decoder for real-time semantic segmentation
    Wang, Kang
    Yang, Jinfu
    Yuan, Shuai
    Li, Mingai
    VISUAL COMPUTER, 2022, 38 (07): : 2329 - 2339
  • [42] Real-time semantic segmentation with dual interaction fusion network
    Qu, Shenming
    Duan, Jiale
    Lu, Yongyong
    Cui, Can
    Xie, Yuan
    JOURNAL OF ELECTRONIC IMAGING, 2024, 33 (02)
  • [43] A lightweight network with attention decoder for real-time semantic segmentation
    Kang Wang
    Jinfu Yang
    Shuai Yuan
    Mingai Li
    The Visual Computer, 2022, 38 : 2329 - 2339
  • [44] Tripartite real-time semantic segmentation network with scene commonality
    Wang, Chenyang
    Wang, Chuanxu
    Liu, Peng
    Zhang, Zhe
    Lin, Guocheng
    JOURNAL OF ELECTRONIC IMAGING, 2024, 33 (02)
  • [45] RTSNet: Real-Time Semantic Segmentation Network For Outdoor Scenes
    Ma, Mingyu
    Zou, Fengshan
    Xu, Fang
    Song, Jilai
    2019 9TH IEEE ANNUAL INTERNATIONAL CONFERENCE ON CYBER TECHNOLOGY IN AUTOMATION, CONTROL, AND INTELLIGENT SYSTEMS (IEEE-CYBER 2019), 2019, : 659 - 664
  • [46] A Lightweight and Dynamic Convolutional Network for Real-time Semantic Segmentation
    Zhang, Chunyu
    Xu, Fang
    Wu, Chengdong
    2023 35TH CHINESE CONTROL AND DECISION CONFERENCE, CCDC, 2023, : 4062 - 4067
  • [48] VNet: A Versatile Network for Efficient Real-Time Semantic Segmentation
    Lin, Ning
    Lu, Hang
    Gao, Jingliang
    Qiao, Shunjie
    Li, Xiaowei
    2019 IEEE 37TH INTERNATIONAL CONFERENCE ON COMPUTER DESIGN (ICCD 2019), 2019, : 626 - 629
  • [49] ESNET: EDGE-BASED SEGMENTATION NETWORK FOR REAL-TIME SEMANTIC SEGMENTATION IN TRAFFIC SCENES
    Lyu, Haoran
    Fu, Huiyuan
    Hu, Xiaojun
    Liu, Liang
    2019 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2019, : 1855 - 1859
  • [50] BSNet: A bilateral real-time semantic segmentation network based on multi-scale receptive fields
    Jin, Zhenyi
    Dou, Furong
    Feng, Ziliang
    Zhang, Chengfang
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2024, 102