Survey on Multi-omics, and Multi-omics Data Analysis, Integration and Application

被引:56
作者
Shahrajabian, Mohamad Hesam [1 ]
Sun, Wenli [1 ]
机构
[1] Chinese Acad Agr Sci, Biotechnol Res Inst, Beijing 100081, Peoples R China
关键词
Omics; multi-omics; data analysis; multi-omics techniques; data integration; triple negative breast cancer (TNBC); TECHNOLOGIES; CANCER; CHALLENGES; STRATEGIES; INSIGHTS; PATHWAYS; GENES;
D O I
10.2174/1573412919666230406100948
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Multi-omics approaches have developed as a profitable technique for plant systems, a popular method in medical and biological sciences underlining the necessity to outline new integrative technology and functions to facilitate the multi-scale depiction of biological systems. Understanding a biological system through various omics layers reveals supplementary sources of variability and probably inferring the sequence of cases leading to a definitive process. Manuscripts and reviews were searched on PubMed with the keywords of multi-omics, data analysis, omics, data analysis, data integration, deep learning multi-omics, and multi-omics integration. Articles that were published after 2010 were prioritized. The authors focused mainly on popular publications developing new approaches. Omics reveal interesting tools to produce behavioral and interactions data in microbial communities, and integrating omics details into microbial risk assessment will have an impact on food safety, and also on relevant spoilage control procedures. Omics datasets, comprehensively characterizing biological cases at a molecular level, are continually increasing in both dimensionality and complexity. Multi-omics data analysis is appropriate for treatment optimization, molecular testing and disease prognosis, and to achieve mechanistic understandings of diseases. New effective solutions for multi-omics data analysis together with well-designed components are recommended for many trials. The goal of this mini-review article is to introduce multi-omics technologies considering different multi-omics analyses.
引用
收藏
页码:267 / 281
页数:15
相关论文
共 176 条
[1]   Computational strategies for single-cell multi-omics integration [J].
Adossa, Nigatu ;
Khan, Sofia ;
Rytkonen, Kalle T. ;
Elo, Laura L. .
COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2021, 19 :2588-2596
[2]   The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2018 update [J].
Afgan, Enis ;
Baker, Dannon ;
Batut, Berenice ;
van den Beek, Marius ;
Bouvier, Dave ;
Cech, Martin ;
Chilton, John ;
Clements, Dave ;
Coraor, Nate ;
Gruening, Bjoern A. ;
Guerler, Aysam ;
Hillman-Jackson, Jennifer ;
Hiltemann, Saskia ;
Jalili, Vahid ;
Rasche, Helena ;
Soranzo, Nicola ;
Goecks, Jeremy ;
Taylor, James ;
Nekrutenko, Anton ;
Blankenberg, Daniel .
NUCLEIC ACIDS RESEARCH, 2018, 46 (W1) :W537-W544
[3]   Biomarkers associated with cheese quality uncovered by integrative multi-omic analysis [J].
Afshari, Roya ;
Pillidge, Christopher J. ;
Dias, Daniel A. ;
Osborn, A. Mark ;
Gill, Harsharn .
FOOD CONTROL, 2021, 123
[4]   Spatial mapping of cancer tissues by OMICS technologies [J].
Ahmed, Rashid ;
Augustine, Robin ;
Valera, Enrique ;
Ganguli, Anurup ;
Mesaeli, Nasrin ;
Ahmad, Irfan S. ;
Bashir, Rashid ;
Hasan, Anwarul .
BIOCHIMICA ET BIOPHYSICA ACTA-REVIEWS ON CANCER, 2022, 1877 (01)
[5]   Wheat omics: Classical breeding to new breeding technologies [J].
Alotaibi, Fahad ;
Alharbi, Saif ;
Alotaibi, Majed ;
Al Mosallam, Mobarak ;
Motawei, Mohamed ;
Alrajhi, Abdullah .
SAUDI JOURNAL OF BIOLOGICAL SCIENCES, 2021, 28 (02) :1433-1444
[6]   Parallel single-cell sequencing links transcriptional and epigenetic heterogeneity [J].
Angermueller, Christof ;
Clark, Stephen J. ;
Lee, Heather J. ;
Macaulay, Iain C. ;
Teng, Mabel J. ;
Hu, Tim Xiaoming ;
Krueger, Felix ;
Smallwood, Sebastien A. ;
Ponting, Chris P. ;
Voet, Thierry ;
Kelsey, Gavin ;
Stegle, Oliver ;
Reik, Wolf .
NATURE METHODS, 2016, 13 (03) :229-+
[7]   Multi-Omics Factor Analysis-a framework for unsupervised integration of multi-omics data sets [J].
Argelaguet, Ricard ;
Velten, Britta ;
Arnol, Damien ;
Dietrich, Sascha ;
Zenz, Thorsten ;
Marioni, John C. ;
Buettner, Florian ;
Huber, Wolfgang ;
Stegle, Oliver .
MOLECULAR SYSTEMS BIOLOGY, 2018, 14 (06)
[8]   Unraveling metabolic alterations in Chlorella vulgaris cultivated on renewable sugars using time resolved multi-omics [J].
Arora, Neha ;
Philippidis, George P. .
SCIENCE OF THE TOTAL ENVIRONMENT, 2021, 800
[9]   Multi-omics insights into functional alterations of the liver in insulin-deficient diabetes mellitus [J].
Backman, Mattias ;
Flenkenthaler, Florian ;
Blutke, Andreas ;
Dahlhoff, Maik ;
Laendstroem, Erik ;
Renner, Simone ;
Philippou-Massier, Julia ;
Krebs, Stefan ;
Rathkolb, Birgit ;
Prehn, Cornelia ;
Grzybek, Michal ;
Coskun, Uenal ;
Rothe, Michael ;
Adamski, Jerzy ;
de Angelis, Martin Hrabe ;
Wanke, Ruediger ;
Froehlich, Thomas ;
Arnold, Georg J. ;
Blum, Helmut ;
Wolf, Eckhard .
MOLECULAR METABOLISM, 2019, 26 :30-44
[10]   Artificial neural networks for multi-omics classifications of hepato-pancreato-biliary cancers: towards the clinical application of genetic data [J].
Bagante, Fabio ;
Spolverato, Gaya ;
Ruzzenente, Andrea ;
Luchini, Claudio ;
Tsilimigras, Diamantis, I ;
Campagnaro, Tommaso ;
Conci, Simone ;
Corbo, Vincenzo ;
Scarpa, Aldo ;
Guglielmi, Alfredo ;
Pawlik, Timothy M. .
EUROPEAN JOURNAL OF CANCER, 2021, 148 :348-358