Simple and Versatile Platforms for Manipulating Light with Matter: Strong Light-Matter Coupling in Fully Solution-Processed Optical Microcavities

被引:10
作者
Strang, Andrew [1 ,2 ]
Quiros-Cordero, Victoria [3 ]
Gregoire, Pascal [4 ]
Pla, Sara [5 ]
Fernandez-Lazaro, Fernando [5 ]
Sastre-Santos, Angela [5 ]
Silva-Acuna, Carlos [6 ,7 ]
Stavrinou, Paul N. [8 ]
Stingelin, Natalie [3 ,9 ]
机构
[1] Imperial Coll London, Dept Phys, London SW7 2AZ, England
[2] Imperial Coll London, Ctr Plast Elect, London SW7 2AZ, England
[3] Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA
[4] Univ Montreal, Succursale Ctr ville, Dept Phys & Regroupement Quebecois Mat Pointe, Case Postale 6128, Montreal, PQ H3C 3J7, Canada
[5] Univ Miguel Hernandez, Area Quim Organ, Inst Bioingn, Elche 03202, Spain
[6] Georgia Inst Technol, Sch Phys, Atlanta, GA 30332 USA
[7] Georgia Inst Technol, Sch Chem & Biochem, Atlanta, GA 30332 USA
[8] Univ Oxford, Dept Engn Sci, Informat Engn Bldg,9 Pk Rd, Oxford OX1 3PD, England
[9] Georgia Inst Technol, Sch Chem & Biochem Engn, Atlanta, GA 30332 USA
基金
英国工程与自然科学研究理事会; 美国国家科学基金会; 欧洲研究理事会;
关键词
exciton-polaritons; perylene diimide; solution-processed microcavities; strong light-matter coupling; EXCITON-POLARITONS; QUANTUM; EMISSION; FILTERS;
D O I
10.1002/adma.202212056
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Planar microcavities with strong light-matter coupling, monolithically processed fully from solution, consisting of two polymer-based distributed Bragg reflectors (DBRs) comprising alternating layers of a high-refractive-index titanium oxide hydrate/poly(vinyl alcohol) hybrid material and a low-refractive-index fluorinated polymer are presented. The DBRs enclose a perylene diimide derivative (b-PDI-1) film positioned at the antinode of the optical mode. Strong light-matter coupling is achieved in these structures at the target excitation of the b-PDI-1. Indeed, the energy-dispersion relation (energy vs in-plane wavevector or output angle) in reflectance and the group delay of transmitted light in the microcavities show a clear anti-crossing-an energy gap between two distinct exciton-polariton dispersion branches. The agreement between classical electrodynamic simulations of the microcavity response and the experimental data demonstrates that the entire microcavity stack can be controllably produced as designed. Promisingly, the refractive index of the inorganic/organic hybrid layers used in the microcavity DBRs can be precisely manipulated between values of 1.50 to 2.10. Hence, microcavities with a wide spectral range of optical modes might be designed and produced with straightforward coating methodologies, enabling fine-tuning of the energy and lifetime of the microcavities' optical modes to harness strong light-matter coupling in a wide variety of solution processable active materials.
引用
收藏
页数:7
相关论文
共 45 条
[1]   Planar refractive index patterning through microcontact photo-thermal annealing of a printable organic/inorganic hybrid material [J].
Bachevillier, Stefan ;
Yuan, Hua-Kang ;
Tetzner, Kornelius ;
Bradley, Donal D. C. ;
Anthopoulos, Thomas D. ;
Stavrinou, Paul N. ;
Stingelin, Natalie .
MATERIALS HORIZONS, 2022, 9 (01) :411-416
[2]   Fully Solution-Processed Photonic Structures from Inorganic/Organic Molecular Hybrid Materials and Commodity Polymers [J].
Bachevillier, Stefan ;
Yuan, Hua-Kang ;
Strang, Andrew ;
Levitsky, Artem ;
Frey, Gitti L. ;
Hafner, Andreas ;
Bradley, Donal D. C. ;
Stavrinou, Paul N. ;
Stingelin, Natalie .
ADVANCED FUNCTIONAL MATERIALS, 2019, 29 (21)
[3]   Polariton-Induced Enhanced Emission from an Organic Dye under the Strong Coupling Regime [J].
Ballarini, Dario ;
De Giorgi, Milena ;
Gambino, Salvatore ;
Lerario, Giovanni ;
Mazzeo, Marco ;
Genco, Armando ;
Accorsi, Gianluca ;
Giansante, Carlo ;
Colella, Silvia ;
D'Agostino, Stefania ;
Cazzato, Paolo ;
Sanvitto, Daniele ;
Gigli, Giuseppe .
ADVANCED OPTICAL MATERIALS, 2014, 2 (11) :1076-1081
[4]   Analytic expressions for the electromagnetic mode density in finite, one-dimensional, photonic band-gap structures [J].
Bendickson, JM ;
Dowling, JP ;
Scalora, M .
PHYSICAL REVIEW E, 1996, 53 (04) :4107-4121
[5]   Coherence and Interaction in Confined Room-Temperature Polariton Condensates with Frenkel Excitons [J].
Betzold, Simon ;
Dusel, Marco ;
Kyriienko, Oleksandr ;
Dietrich, Christof P. ;
Klembt, Sebastian ;
Ohmer, Juergen ;
Fischer, Utz ;
Shelykh, Ivan A. ;
Schneider, Christian ;
Hoefling, Sven .
ACS PHOTONICS, 2020, 7 (02) :384-+
[6]   A Yellow Polariton Condensate in a Dye Filled Microcavity [J].
Cookson, Tamsin ;
Georgiou, Kyriacos ;
Zasedatelev, Anton ;
Grant, Richard T. ;
Virgili, Tersilla ;
Cavazzini, Marco ;
Galeotti, Francesco ;
Clark, Caspar ;
Berloff, Natalia G. ;
Lidzey, David G. ;
Lagoudakis, Pavlos G. .
ADVANCED OPTICAL MATERIALS, 2017, 5 (18)
[7]  
Cummings F. W., 1965, PHYS REV, V140, pA1051, DOI DOI 10.1103/PHYSREV.140.A1051
[8]  
Daskalakis KS, 2014, NAT MATER, V13, P272, DOI [10.1038/NMAT3874, 10.1038/nmat3874]
[9]   Reflectivity of 88% for four-period hybrid Bragg mirror from spin coating process [J].
DeSilva, L. Ajith ;
Gadipalli, Raghuveer ;
Donato, Anthony ;
Bandara, T. M. W. J. .
OPTIK, 2018, 157 :360-364
[10]   Directional Enhancement of Spontaneous Emission in Polymer Flexible Microcavities [J].
Frezza, L. ;
Patrini, M. ;
Liscidini, M. ;
Comoretto, D. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (40) :19939-19946