Single-cell RNA sequencing in osteoarthritis

被引:28
作者
Gu, Yuyuan [1 ,2 ,3 ]
Hu, Yan [1 ,2 ]
Zhang, Hao [1 ,2 ]
Wang, Sicheng [1 ,2 ,4 ,6 ]
Xu, Ke [1 ,2 ,5 ,6 ]
Su, Jiacan [1 ,2 ,6 ]
机构
[1] Shanghai Univ, Inst Translat Med, Shanghai, Peoples R China
[2] Shanghai Univ, Organoid Res Ctr, Shanghai, Peoples R China
[3] Shanghai Univ, Sch Med, Shanghai, Peoples R China
[4] Shanghai Zhongye Hosp, Dept Orthoped, Shanghai, Peoples R China
[5] Shanghai Univ, Wenzhou Inst, Wenzhou, Peoples R China
[6] Shanghai Univ, Inst Translat Med, Shanghai 200444, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
GENE-EXPRESSION; SEQ ANALYSIS; KNEE OSTEOARTHRITIS; CARTILAGE REPAIR; SUBCHONDRAL BONE; MESSENGER-RNA; TRANSCRIPTOME; REVEALS; PROGRESSION; MASS;
D O I
10.1111/cpr.13517
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Osteoarthritis is a progressive and heterogeneous joint disease with complex pathogenesis. The various phenotypes associated with each patient suggest that better subgrouping of tissues associated with genotypes in different phases of osteoarthritis may provide new insights into the onset and progression of the disease. Recently, single-cell RNA sequencing was used to describe osteoarthritis pathogenesis on a high-resolution view surpassing traditional technologies. Herein, this review summarizes the microstructural changes in articular cartilage, meniscus, synovium and subchondral bone that are mainly due to crosstalk amongst chondrocytes, osteoblasts, fibroblasts and endothelial cells during osteoarthritis progression. Next, we focus on the promising targets discovered by single-cell RNA sequencing and its potential applications in target drugs and tissue engineering. Additionally, the limited amount of research on the evaluation of bone-related biomaterials is reviewed. Based on the pre-clinical findings, we elaborate on the potential clinical values of single-cell RNA sequencing for the therapeutic strategies of osteoarthritis. Finally, a perspective on the future development of patient-centred medicine for osteoarthritis therapy combining other single-cell multi-omics technologies is discussed. This review will provide new insights into osteoarthritis pathogenesis on a cellular level and the field of applications of single-cell RNA sequencing in personalized therapeutics for osteoarthritis in the future.
引用
收藏
页数:22
相关论文
共 180 条
[61]   Single-cell RNA-seq analysis reveals the progression of human osteoarthritis [J].
Ji, Quanbo ;
Zheng, Yuxuan ;
Zhang, Guoqian ;
Hu, Yuqiong ;
Fan, Xiaoying ;
Hou, Yu ;
Wen, Lu ;
Li, Li ;
Xu, Yameng ;
Wang, Yan ;
Tang, Fuchou .
ANNALS OF THE RHEUMATIC DISEASES, 2019, 78 (01) :100-110
[62]   High-throughput single-cell sequencing in cancer research [J].
Jia, Qingzhu ;
Chu, Han ;
Jin, Zheng ;
Long, Haixia ;
Zhu, Bo .
SIGNAL TRANSDUCTION AND TARGETED THERAPY, 2022, 7 (01)
[63]   Origin and function of cartilage stem/progenitor cells in osteoarthritis [J].
Jiang, Yangzi ;
Tuan, Rocky S. .
NATURE REVIEWS RHEUMATOLOGY, 2015, 11 (04) :206-212
[64]   Discovery of rare cells from voluminous single cell expression data [J].
Jindal, Aashi ;
Gupta, Prashant ;
Jayadeva ;
Sengupta, Debarka .
NATURE COMMUNICATIONS, 2018, 9
[65]  
Jung S, 2021, BRIEF BIOINFORM, V22
[66]   Diagnosis and Treatment of Hip and Knee Osteoarthritis A Review [J].
Katz, Jeffrey N. ;
Arant, Kaetlyn R. ;
Loeser, Richard F. .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2021, 325 (06) :568-578
[67]   HSPB1 facilitates ERK-mediated phosphorylation and degradation of BIM to attenuate endoplasmic reticulum stress-induced apoptosis [J].
Kennedy, Donna ;
Mnich, Katarzyna ;
Oommen, Deepu ;
Chakravarthy, Reka ;
Almeida-Souza, Leonardo ;
Krols, Michiel ;
Saveljeva, Svetlana ;
Doyle, Karen ;
Gupta, Sanjeev ;
Timmerman, Vincent ;
Janssens, Sophie ;
Gorman, Adrienne M. ;
Samali, Afshin .
CELL DEATH & DISEASE, 2017, 8 :e3026-e3026
[68]   Targeted therapy guided by single-cell transcriptomic analysis in drug-induced hypersensitivity syndrome: a case report [J].
Kim, Doyoung ;
Kobayashi, Tetsuro ;
Voisin, Benjamin ;
Jo, Jay-Hyun ;
Sakamoto, Keiko ;
Jin, Seon-Pil ;
Kelly, Michael ;
Pasieka, Helena B. ;
Naff, Jessica L. ;
Meyerle, Jon H. ;
Ikpeama, Ijeoma D. ;
Fahle, Gary A. ;
Davis, Fred P. ;
Rosenzweig, Sergio D. ;
Alejo, Julie C. ;
Pittaluga, Stefania ;
Kong, Heidi H. ;
Freeman, Alexandra F. ;
Nagao, Keisuke .
NATURE MEDICINE, 2020, 26 (02) :236-+
[69]   Demystifying "drop-outs" in single-cell UMI data [J].
Kim, Tae Hyun ;
Zhou, Xiang ;
Chen, Mengjie .
GENOME BIOLOGY, 2020, 21 (01)
[70]  
Kiselev VY, 2019, NAT REV GENET, V20, P273, DOI 10.1038/s41576-018-0088-9