共 50 条
Structural, BET and EPR properties of mixed zinc-manganese spinel ferrites nanoparticles for energy storage applications
被引:35
|作者:
Manohar, Ala
[1
]
Vijayakanth, V.
[2
]
Vattikuti, S. V. Prabhakar
[3
]
Kim, Ki Hyeon
[1
]
机构:
[1] Yeungnam Univ, Dept Phys, Gyongsan 38541, South Korea
[2] Vellore Inst Technol, Ctr Nanotechnol Res, Vellore 632014, India
[3] Yeungnam Univ, Sch Mech Engn, Gyongsan 38541, South Korea
关键词:
Spinel ferrites;
Cyclic voltammetry;
Specific capacitance;
Supercapacitor;
COMPOSITES;
PERFORMANCE;
ELECTRODE;
D O I:
10.1016/j.ceramint.2023.03.089
中图分类号:
TQ174 [陶瓷工业];
TB3 [工程材料学];
学科分类号:
0805 ;
080502 ;
摘要:
X-ray diffraction data (XRD) validated the characteristic crystalline spinel cubic structure and a Field-emission scanning electron microscope/energy dispersive spectroscopy (FE-SEM/EDS) validated the proper stoichio-metric element ratio of the prepared materials. By using X-ray photoelectron spectroscopy (XPS), the oxidation state of the elements in the prepared materials was verified. An electron paramagnetic resonance (EPR) spec-trometer confirmed that Lande factor (g) values decreased as Zn2+ concentration in MnFe2O4 increased. The electrochemical (EC) characteristics of the materials were verified during production using a three electrode instrument. The EC performances confirm the EC behavior of the electrode materials. We investigated the EC properties of the electrodes using cyclic voltammetry (CV) and galvanostatic charge-discharge (GCD) methods. The Mn0.85Zn0.15Fe2O4 (code as: MZF1) electrode material has a specific capacitance (Cs) of 62.96 F/g compared to Mn0.75Zn0.25Fe2O4 (code as: MZF2) and Mn0.65Zn0.35Fe2O4 (code as: MZF3) electrode at a current density (CD) of 0.5 A/g. According to recent research, electrode materials should be made with the necessary form and size for great act supercapacitor (SC) applications.
引用
收藏
页码:19717 / 19727
页数:11
相关论文