MRI-based nomograms and radiomics in presurgical prediction of extraprostatic extension in prostate cancer: a systematic review

被引:11
作者
Calimano-Ramirez, Luis F. F. [1 ]
Virarkar, Mayur K. K. [1 ]
Hernandez, Mauricio [1 ]
Ozdemir, Savas [1 ]
Kumar, Sindhu [1 ]
Gopireddy, Dheeraj R. R. [1 ]
Lall, Chandana [1 ]
Balaji, K. C. [2 ]
Mete, Mutlu [3 ]
Gumus, Kazim Z. Z. [1 ]
机构
[1] Univ Florida, Coll Med, Dept Radiol, Jacksonville, FL 32209 USA
[2] Univ Florida, Coll Med, Dept Urol, Jacksonville, FL 32209 USA
[3] Texas A&M Univ, Dept Comp Sci & Informat Syst, Commerce, TX 75428 USA
关键词
Extraprostatic extension (EPE); Extracapsular extension (ECE); Radiomics; Nomogram; Prostate cancer (PCa); Multi-parametric MRI (mpMRI); EXTRACAPSULAR EXTENSION; EXTERNAL VALIDATION; PREOPERATIVE NOMOGRAMS; RADICAL PROSTATECTOMY; TEXTURAL FEATURES; DIAGNOSIS; SIDE; CLASSIFICATION; INFORMATION; ACCURACY;
D O I
10.1007/s00261-023-03924-y
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
PurposePrediction of extraprostatic extension (EPE) is essential for accurate surgical planning in prostate cancer (PCa). Radiomics based on magnetic resonance imaging (MRI) has shown potential to predict EPE. We aimed to evaluate studies proposing MRI-based nomograms and radiomics for EPE prediction and assess the quality of current radiomics literature.MethodsWe used PubMed, EMBASE, and SCOPUS databases to find related articles using synonyms for MRI radiomics and nomograms to predict EPE. Two co-authors scored the quality of radiomics literature using the Radiomics Quality Score (RQS). Inter-rater agreement was measured using the intraclass correlation coefficient (ICC) from total RQS scores. We analyzed the characteristic s of the studies and used ANOVAs to associate the area under the curve (AUC) to sample size, clinical and imaging variables, and RQS scores.ResultsWe identified 33 studies-22 nomograms and 11 radiomics analyses. The mean AUC for nomogram articles was 0.783, and no significant associations were found between AUC and sample size, clinical variables, or number of imaging variables. For radiomics articles, there were significant associations between number of lesions and AUC (p < 0.013). The average RQS total score was 15.91/36 (44%). Through the radiomics operation, segmentation of region-of-interest, selection of features, and model building resulted in a broader range of results. The qualities the studies lacked most were phantom tests for scanner variabilities, temporal variability, external validation datasets, prospective designs, cost-effectiveness analysis, and open science.ConclusionUtilizing MRI-based radiomics to predict EPE in PCa patients demonstrates promising outcomes. However, quality improvement and standardization of radiomics workflow are needed.
引用
收藏
页码:2379 / 2400
页数:22
相关论文
共 89 条
  • [1] Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach
    Aerts, Hugo J. W. L.
    Velazquez, Emmanuel Rios
    Leijenaar, Ralph T. H.
    Parmar, Chintan
    Grossmann, Patrick
    Cavalho, Sara
    Bussink, Johan
    Monshouwer, Rene
    Haibe-Kains, Benjamin
    Rietveld, Derek
    Hoebers, Frank
    Rietbergen, Michelle M.
    Leemans, C. Rene
    Dekker, Andre
    Quackenbush, John
    Gillies, Robert J.
    Lambin, Philippe
    [J]. NATURE COMMUNICATIONS, 2014, 5
  • [2] Interactive dedicated training curriculum improves accuracy in the interpretation of MR imaging of prostate cancer
    Akin, Oguz
    Riedl, Christopher C.
    Ishill, Nicole M.
    Moskowitz, Chaya S.
    Zhang, Jingbo
    Hricak, Hedvig
    [J]. EUROPEAN RADIOLOGY, 2010, 20 (04) : 995 - 1002
  • [3] Independent external validation of nomogram to predict extracapsular extension in patients with prostate cancer
    Alves, Joao Ricardo
    Muglia, Valdair F.
    Lucchesi, Fabiano R.
    Faria, Raisa A. O. G.
    Alcantara-Quispe, Cinthia
    Vazquez, Vinicius L.
    Reis, Rodolfo B.
    Faria, Eliney F.
    [J]. EUROPEAN RADIOLOGY, 2020, 30 (09) : 5004 - 5010
  • [4] Multiparametric Magnetic Resonance Imaging-Based Peritumoral Radiomics for Preoperative Prediction of the Presence of Extracapsular Extension With Prostate Cancer
    Bai, Honglin
    Xia, Wei
    Ji, Xuefu
    He, Dong
    Zhao, Xingyu
    Bao, Jie
    Zhou, Jian
    Wei, Xuedong
    Huang, Yuhua
    Li, Qiong
    Gao, Xin
    [J]. JOURNAL OF MAGNETIC RESONANCE IMAGING, 2021, 54 (04) : 1222 - 1230
  • [5] Radical Prostatectomy or Watchful Waiting in Prostate Cancer-29-Year Follow-up
    Bill-Axelson, Anna
    Holmberg, Lars
    Garmo, Hans
    Taari, Kimmo
    Busch, Christer
    Nordling, Stig
    Haggman, Michael
    Andersson, Swen-Olof
    Andren, Ove
    Steineck, Gunnar
    Adami, Hans-Olov
    Johansson, Jan-Erik
    [J]. NEW ENGLAND JOURNAL OF MEDICINE, 2018, 379 (24) : 2319 - 2329
  • [6] Assessing Radiology Research on Artificial Intelligence: A Brief Guide for Authors, Reviewers, and Readers-From the Radiology Editorial Board
    Bluemke, David A.
    Moy, Linda
    Bredella, Miriam A.
    Ertl-Wagner, Birgit B.
    Fowler, Kathryn J.
    Goh, Vicky J.
    Halpern, Elkan F.
    Hess, Christopher P.
    Schiebler, Mark L.
    Weiss, Clifford R.
    [J]. RADIOLOGY, 2020, 294 (03) : 487 - 489
  • [7] MAPS: A Quantitative Radiomics Approach for Prostate Cancer Detection
    Cameron, Andrew
    Khalvati, Farzad
    Haider, Masoom A.
    Wong, Alexander
    [J]. IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2016, 63 (06) : 1145 - 1156
  • [8] Radiomics in Glioblastoma: Current Status and Challenges Facing Clinical Implementation
    Chaddad, Ahmad
    Kucharczyk, Michael Jonathan
    Daniel, Paul
    Sabri, Siham
    Jean-Claude, Bertrand J.
    Niazi, Tamim
    Abdulkarim, Bassam
    [J]. FRONTIERS IN ONCOLOGY, 2019, 9
  • [9] Development and comparison of a Chinese nomogram adding multi-parametric MRI information for predicting extracapsular extension of prostate cancer
    Chen, Yuke
    Yu, Wei
    Fan, Yu
    Zhou, Liqun
    Yang, Yang
    Wang, Huihui
    Jiang, Yuan
    Wang, Xiaoying
    Wu, Shiliang
    Jin, Jie
    [J]. ONCOTARGET, 2017, 8 (13) : 22095 - 22103
  • [10] Preoperative Nomograms for Predicting Extracapsular Extension in Korean Men with Localized Prostate Cancer: A Multi-institutional Clinicopathologic Study
    Chung, Jae Seung
    Choi, Han Yong
    Song, Hae-Ryoung
    Byun, Seok-Soo
    Seo, Seong Il
    Song, Cheryn
    Cho, Jin Seon
    Lee, Sang Eun
    Ahn, Hanjong
    Lee, Eun Sik
    Kim, Won-Jae
    Chung, Moon Kee
    Jung, Tae Young
    Yu, Ho Song
    Choi, Young Deuk
    [J]. JOURNAL OF KOREAN MEDICAL SCIENCE, 2010, 25 (10) : 1443 - 1448