Urban Built Environment Assessment Based on Scene Understanding of High-Resolution Remote Sensing Imagery

被引:5
|
作者
Chen, Jie [1 ]
Dai, Xinyi [1 ]
Guo, Ya [1 ]
Zhu, Jingru [1 ]
Mei, Xiaoming [1 ]
Deng, Min [1 ]
Sun, Geng [1 ]
机构
[1] Cent South Univ, Sch Geosci & Info Phys, Changsha 410083, Peoples R China
基金
中国国家自然科学基金;
关键词
remote sensing; urban-built-environment assessment; spatial cognition; image understanding; GOOGLE STREET VIEW; PHYSICAL-ACTIVITY; QUALITIES; HEALTH; CITY; SUSTAINABILITY; SATISFACTION; WALKABILITY; PERCEPTIONS; INDICATORS;
D O I
10.3390/rs15051436
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
A high-quality built environment is important for human health and well-being. Assessing the quality of the urban built environment can provide planners and managers with decision-making for urban renewal to improve resident satisfaction. Many studies evaluate the built environment from the perspective of street scenes, but it is difficult for street-view data to cover every area of the built environment and its update frequency is low, which cannot meet the requirement of built-environment assessment under rapid urban development. Earth-observation data have the advantages of wide coverage, high update frequency, and good availability. This paper proposes an intelligent evaluation method for urban built environments based on scene understanding of high-resolution remote-sensing images. It contributes not only the assessment criteria for the built environment in remote-sensing images from the perspective of visual cognition but also an image-caption dataset applicable to urban-built-environment assessment. The results show that the proposed deep-learning-driven method can provide a feasible paradigm for representing high-resolution remote-sensing image scenes and large-scale urban-built-area assessment.
引用
收藏
页数:26
相关论文
共 50 条
  • [31] Optimum segmentation of simple objects in high-resolution remote sensing imagery in coastal areas
    CHEN Jianyu1
    2. Shanghai Institute of Technical Physics
    ScienceinChina(SeriesD:EarthSciences), 2006, (11) : 1195 - 1203
  • [32] Incorporating Superpixel Context for Extracting Building From High-Resolution Remote Sensing Imagery
    Fang, Fang
    Zheng, Kang
    Li, Shengwen
    Xu, Rui
    Hao, Qingyi
    Feng, Yuting
    Zhou, Shunping
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 1176 - 1190
  • [33] Optimum segmentation of simple objects in high-resolution remote sensing imagery in coastal areas
    Chen Jianyu
    Pan Delu
    Mao Zhihua
    SCIENCE IN CHINA SERIES D-EARTH SCIENCES, 2006, 49 (11): : 1195 - 1203
  • [34] AANet: Adaptive Attention Networks for Semantic Segmentation of High-Resolution Remote Sensing Imagery
    Chen, Yan
    Zhang, Qianchuan
    Wang, Xiaofeng
    Dong, Quan
    Kang, Menglei
    Jiang, Wenxiang
    Wang, Mengyuan
    Xu, Lixiang
    Zhang, Chen
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 14640 - 14655
  • [35] Bridge monitoring and assessment by high-resolution satellite remote sensing technologies
    Gagliardi, Valerio
    Ciampoli, Luca Bianchini
    D'Amico, Fabrizio
    Alani, Amir M.
    Tosti, Fabio
    Battagliere, Maria Libera
    Benedetto, Andrea
    SPIE FUTURE SENSING TECHNOLOGIES (2020), 2020, 11525
  • [36] Damage Assessment of Haiti Earthquake Emergency Using High Resolution Remote Sensing Imagery
    Wang, Long
    Dou, Aixia
    Wang, Xiaoqing
    Dong, Yanfang
    Ding, Xiang
    Li, Zhi
    Yuan, Xiaoxiang
    Qiu, Yurong
    REMOTE SENSING OF THE ENVIRONMENT: THE 17TH CHINA CONFERENCE ON REMOTE SENSING, 2011, 8203
  • [37] SE-HRNET: A DEEP HIGH-RESOLUTION NETWORK WITH ATTENTION FOR REMOTE SENSING SCENE CLASSIFICATION
    Li, Lingling
    Tian, Tian
    Li, Hang
    Wang, Lizhe
    IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 533 - 536
  • [38] Multi-deep features fusion for high-resolution remote sensing image scene classification
    Baohua Yuan
    Lixin Han
    Xiangping Gu
    Hong Yan
    Neural Computing and Applications, 2021, 33 : 2047 - 2063
  • [39] Multi-deep features fusion for high-resolution remote sensing image scene classification
    Yuan, Baohua
    Han, Lixin
    Gu, Xiangping
    Yan, Hong
    NEURAL COMPUTING & APPLICATIONS, 2021, 33 (06): : 2047 - 2063
  • [40] Open water detection in urban environments using high spatial resolution remote sensing imagery
    Chen, Fen
    Chen, Xingzhuang
    Van de Voorde, Tim
    Roberts, Dar
    Jiang, Huajun
    Xu, Wenbo
    REMOTE SENSING OF ENVIRONMENT, 2020, 242