The value of arterial spin labelling perfusion MRI in brain age prediction

被引:4
作者
Dijsselhof, Mathijs B. J. [1 ,2 ]
Barboure, Michelle [1 ,2 ]
Stritt, Michael [3 ]
Nordhoy, Wibeke [4 ]
Wink, Alle Meije [1 ,2 ]
Beck, Dani [5 ,6 ,7 ]
Westlye, Lars T. [5 ,6 ,8 ]
Cole, James H. [9 ,10 ,12 ]
Barkhof, Frederik [1 ,2 ,11 ]
Mutsaerts, Henk J. M. M. [1 ,2 ]
Petr, Jan [1 ,2 ,13 ]
机构
[1] Vrije Univ, Amsterdam Univ, Dept Radiol & Nucl Med, Med Ctr, Amsterdam, Netherlands
[2] Amsterdam Neurosci, Brain Imaging, Amsterdam, Netherlands
[3] Mediri GmbH, Heidelberg, Germany
[4] Oslo Univ Hosp, Dept Phys & Computat Radiol, Div Radiol & Nucl Med, Oslo, Norway
[5] Oslo Univ Hosp, Norwegian Ctr Mental Disorders Res NORMENT, Oslo, Norway
[6] Univ Oslo, Dept Psychol, Oslo, Norway
[7] Diakonhjemmet Hosp, Dept Psychiat Res, Oslo, Norway
[8] Univ Oslo, KG Jebsen Ctr Neurodev Disorders, Oslo, Norway
[9] UCL, Queen Sq Inst Neurol, Dementia Res Ctr, London, England
[10] UCL, Comp Sci, Ctr Med Image Comp, London, England
[11] UCL, Queen Sq Inst Neurol, London, England
[12] UCL, Ctr Med Image Comp, London, England
[13] Helmholtz Zent Dresden Rossendorf, Inst Radiopharmaceut Canc Res, Dresden, Germany
基金
欧洲研究理事会;
关键词
ageing; ASL; brain age; cerebral perfusion; cerebrovascular health; machine learning; CEREBRAL-BLOOD-FLOW; ALZHEIMERS; SYSTEM;
D O I
10.1002/hbm.26242
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Current structural MRI-based brain age estimates and their difference from chronological age-the brain age gap (BAG)-are limited to late-stage pathological brain-tissue changes. The addition of physiological MRI features may detect early-stage pathological brain alterations and improve brain age prediction. This study investigated the optimal combination of structural and physiological arterial spin labelling (ASL) image features and algorithms. Healthy participants (n = 341, age 59.7 +/- 14.8 years) were scanned at baseline and after 1.7 +/- 0.5 years follow-up (n = 248, mean age 62.4 +/- 13.3 years). From 3 T MRI, structural (T1w and FLAIR) volumetric ROI and physiological (ASL) cerebral blood flow (CBF) and spatial coefficient of variation ROI features were constructed. Multiple combinations of features and machine learning algorithms were evaluated using the Mean Absolute Error (MAE). From the best model, longitudinal BAG repeatability and feature importance were assessed. The ElasticNetCV algorithm using T1w + FLAIR+ASL performed best (MAE = 5.0 +/- 0.3 years), and better compared with using T1w + FLAIR (MAE = 6.0 +/- 0.4 years, p < .01). The three most important features were, in descending order, GM CBF, GM/ICV, and WM CBF. Average baseline and follow-up BAGs were similar (-1.5 +/- 6.3 and - 1.1 +/- 6.4 years respectively, ICC = 0.85, 95% CI: 0.8-0.9, p = .16). The addition of ASL features to structural brain age, combined with the ElasticNetCV algorithm, improved brain age prediction the most, and performed best in a cross-sectional and repeatability comparison. These findings encourage future studies to explore the value of ASL in brain age in various pathologies.
引用
收藏
页码:2754 / 2766
页数:13
相关论文
共 50 条
  • [41] Editorial: Multi-parametric perfusion MRI by arterial spin labeling
    Cui, Long-Biao
    Wang, Danny J. J.
    Ma, Guolin
    FRONTIERS IN NEUROSCIENCE, 2023, 16
  • [42] Denoising arterial spin labeling perfusion MRI with deep machine learning
    Xie, Danfeng
    Li, Yiran
    Yang, Hanlu
    Bai, Li
    Wang, Tianyao
    Zhou, Fuqing
    Zhang, Lei
    Wang, Ze
    MAGNETIC RESONANCE IMAGING, 2020, 68 : 95 - 105
  • [43] Arterial Spin Labeling Perfusion of the Brain: Emerging Clinical Applications
    Haller, Sven
    Zaharchuk, Greg
    Thomas, David L.
    Lovblad, Karl-Olof
    Barkhof, Frederik
    Golay, Xavier
    RADIOLOGY, 2016, 281 (02) : 337 - 356
  • [44] MULTISLICE MRI OF RAT-BRAIN PERFUSION DURING AMPHETAMINE STIMULATION USING ARTERIAL SPIN-LABELING
    SILVA, AC
    ZHANG, WG
    WILLIAMS, DS
    KORETSKY, AP
    MAGNETIC RESONANCE IN MEDICINE, 1995, 33 (02) : 209 - 214
  • [45] Arterial spin-labeled perfusion MRI in basic and clinical neuroscience
    Detre, John A.
    Wang, Jiongjiong
    Wang, Ze
    Rao, Hengyi
    CURRENT OPINION IN NEUROLOGY, 2009, 22 (04) : 348 - 355
  • [46] Automatic classification of major depression disorder using arterial spin labeling MRI perfusion measurements
    Ramasubbu, Rajamannar
    Brown, Elliot Clayton
    Marcil, Lorenzo Daniel
    Talai, Aron Sahand
    Forkert, Nils Daniel
    PSYCHIATRY AND CLINICAL NEUROSCIENCES, 2019, 73 (08) : 486 - 493
  • [47] Arterial Spin Labeling Perfusion MRI Signal Processing Through Traditional Methods and Machine Learning
    Wang, Ze
    INVESTIGATIVE MAGNETIC RESONANCE IMAGING, 2022, 26 (04) : 220 - 228
  • [48] Sensitivity of Arterial Spin Labeling Perfusion MRI to Pharmacologically Induced Perfusion Changes in Rat Kidneys
    Tan, Huan
    Thacker, Jon
    Franklin, Tammy
    Prasad, Pottumarthi V.
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2015, 41 (04) : 1124 - 1128
  • [49] Arterial spin labelling qualitative assessment in paediatric patients with MRI-negative epilepsy
    Pasca, L.
    Sanvito, F.
    Ballante, E.
    Totaro, M.
    Paoletti, M.
    Bergui, A.
    Varesio, C.
    Rognone, E.
    De Giorgis, V.
    Pichiecchio, A.
    CLINICAL RADIOLOGY, 2021, 76 (12) : 942.e15 - 942.e23
  • [50] Measuring Regional Cerebral Perfusion in Adults and Children With Williams Syndrome Using Oxygen-15 Water PET and Arterial Spin Labelling MRI
    Gregory, Michael
    Kippenhan, J. Shane
    Mervis, Carolyn
    Eisenberg, Daniel
    Jabbi, Mbemba
    Kohn, Philip
    Nash, Tiffany
    Talagala, Lalith
    Berman, Karen
    NEUROPSYCHOPHARMACOLOGY, 2018, 43 : S100 - S101