The value of arterial spin labelling perfusion MRI in brain age prediction

被引:4
作者
Dijsselhof, Mathijs B. J. [1 ,2 ]
Barboure, Michelle [1 ,2 ]
Stritt, Michael [3 ]
Nordhoy, Wibeke [4 ]
Wink, Alle Meije [1 ,2 ]
Beck, Dani [5 ,6 ,7 ]
Westlye, Lars T. [5 ,6 ,8 ]
Cole, James H. [9 ,10 ,12 ]
Barkhof, Frederik [1 ,2 ,11 ]
Mutsaerts, Henk J. M. M. [1 ,2 ]
Petr, Jan [1 ,2 ,13 ]
机构
[1] Vrije Univ, Amsterdam Univ, Dept Radiol & Nucl Med, Med Ctr, Amsterdam, Netherlands
[2] Amsterdam Neurosci, Brain Imaging, Amsterdam, Netherlands
[3] Mediri GmbH, Heidelberg, Germany
[4] Oslo Univ Hosp, Dept Phys & Computat Radiol, Div Radiol & Nucl Med, Oslo, Norway
[5] Oslo Univ Hosp, Norwegian Ctr Mental Disorders Res NORMENT, Oslo, Norway
[6] Univ Oslo, Dept Psychol, Oslo, Norway
[7] Diakonhjemmet Hosp, Dept Psychiat Res, Oslo, Norway
[8] Univ Oslo, KG Jebsen Ctr Neurodev Disorders, Oslo, Norway
[9] UCL, Queen Sq Inst Neurol, Dementia Res Ctr, London, England
[10] UCL, Comp Sci, Ctr Med Image Comp, London, England
[11] UCL, Queen Sq Inst Neurol, London, England
[12] UCL, Ctr Med Image Comp, London, England
[13] Helmholtz Zent Dresden Rossendorf, Inst Radiopharmaceut Canc Res, Dresden, Germany
基金
欧洲研究理事会;
关键词
ageing; ASL; brain age; cerebral perfusion; cerebrovascular health; machine learning; CEREBRAL-BLOOD-FLOW; ALZHEIMERS; SYSTEM;
D O I
10.1002/hbm.26242
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Current structural MRI-based brain age estimates and their difference from chronological age-the brain age gap (BAG)-are limited to late-stage pathological brain-tissue changes. The addition of physiological MRI features may detect early-stage pathological brain alterations and improve brain age prediction. This study investigated the optimal combination of structural and physiological arterial spin labelling (ASL) image features and algorithms. Healthy participants (n = 341, age 59.7 +/- 14.8 years) were scanned at baseline and after 1.7 +/- 0.5 years follow-up (n = 248, mean age 62.4 +/- 13.3 years). From 3 T MRI, structural (T1w and FLAIR) volumetric ROI and physiological (ASL) cerebral blood flow (CBF) and spatial coefficient of variation ROI features were constructed. Multiple combinations of features and machine learning algorithms were evaluated using the Mean Absolute Error (MAE). From the best model, longitudinal BAG repeatability and feature importance were assessed. The ElasticNetCV algorithm using T1w + FLAIR+ASL performed best (MAE = 5.0 +/- 0.3 years), and better compared with using T1w + FLAIR (MAE = 6.0 +/- 0.4 years, p < .01). The three most important features were, in descending order, GM CBF, GM/ICV, and WM CBF. Average baseline and follow-up BAGs were similar (-1.5 +/- 6.3 and - 1.1 +/- 6.4 years respectively, ICC = 0.85, 95% CI: 0.8-0.9, p = .16). The addition of ASL features to structural brain age, combined with the ElasticNetCV algorithm, improved brain age prediction the most, and performed best in a cross-sectional and repeatability comparison. These findings encourage future studies to explore the value of ASL in brain age in various pathologies.
引用
收藏
页码:2754 / 2766
页数:13
相关论文
共 50 条
  • [31] Age Prediction Based on Brain MRI Image: A Survey
    Hedieh Sajedi
    Nastaran Pardakhti
    Journal of Medical Systems, 2019, 43
  • [32] Age Prediction Based on Brain MRI Image: A Survey
    Sajedi, Hedieh
    Pardakhti, Nastaran
    JOURNAL OF MEDICAL SYSTEMS, 2019, 43 (08)
  • [33] Cerebral perfusion in posterior reversible encephalopathy syndrome measured with arterial spin labeling MRI
    Fazeli, Soudabeh
    Noorbakhsh, Abraham
    Imbesi, Steven G.
    Bolar, Divya S.
    NEUROIMAGE-CLINICAL, 2022, 35
  • [34] Quantitative non-contrast perfusion MRI in the body using arterial spin labeling
    Alvarez, Maria Guadalupe Mora
    Madhuranthakam, Ananth J.
    Udayakumar, Durga
    MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE, 2024, 37 (04): : 681 - 695
  • [35] Noncontrast Pediatric Brain Perfusion Arterial Spin Labeling and Intravoxel Incoherent Motion
    Wang, Danny J. J.
    Le Bihan, Denis
    Krishnamurthy, Ram
    Smith, Mark
    Ho, Mai-Lan
    MAGNETIC RESONANCE IMAGING CLINICS OF NORTH AMERICA, 2021, 29 (04) : 493 - 513
  • [36] Impact of neonate haematocrit variability on the longitudinal relaxation time of blood: Implications for arterial spin labelling MRI
    De Vis, J. B.
    Hendrikse, J.
    Groenendaal, F.
    de Vries, L. S.
    Kersbergen, K. J.
    Benders, M. J. N. L.
    Petersen, E. T.
    NEUROIMAGE-CLINICAL, 2014, 4 : 517 - 525
  • [37] Ultra-high-field arterial spin labelling MRI for non-contrast assessment of cortical lesion perfusion in multiple sclerosis
    Dury, Richard J.
    Falah, Yasser
    Gowland, Penny A.
    Evangelou, Nikos
    Bright, Molly G.
    Francis, Susan T.
    EUROPEAN RADIOLOGY, 2019, 29 (04) : 2027 - 2033
  • [38] Arterial Spin Labeling Perfusion MRI in Pediatric Arterial Ischemic Stroke: Initial Experiences
    Chen, Juan
    Licht, Daniel J.
    Smith, Sabrina E.
    Agner, Shannon C.
    Mason, Stefanie
    Wang, Sumei
    Silvestre, David W.
    Detre, John A.
    Zimmerman, Robert A.
    Ichord, Rebecca N.
    Wang, Jiongjiong
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2009, 29 (02) : 282 - 290
  • [39] Arterial Spin Labeling MRI: Clinical Applications in the Brain
    Telischak, Nicholas A.
    Detre, John A.
    Zaharchuk, Greg
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2015, 41 (05) : 1165 - 1180
  • [40] Regional changes in brain perfusion during brain maturation measured non-invasively with Arterial Spin Labeling MRI in neonates
    De Vis, Jill B.
    Petersen, Esben T.
    de Vries, Linda S.
    Groenendaal, Floris
    Kersbergen, Karina J.
    Alderliesten, Thomas
    Hendrikse, Jeroen
    Benders, Manon J. N. L.
    EUROPEAN JOURNAL OF RADIOLOGY, 2013, 82 (03) : 538 - 543