The value of arterial spin labelling perfusion MRI in brain age prediction

被引:4
作者
Dijsselhof, Mathijs B. J. [1 ,2 ]
Barboure, Michelle [1 ,2 ]
Stritt, Michael [3 ]
Nordhoy, Wibeke [4 ]
Wink, Alle Meije [1 ,2 ]
Beck, Dani [5 ,6 ,7 ]
Westlye, Lars T. [5 ,6 ,8 ]
Cole, James H. [9 ,10 ,12 ]
Barkhof, Frederik [1 ,2 ,11 ]
Mutsaerts, Henk J. M. M. [1 ,2 ]
Petr, Jan [1 ,2 ,13 ]
机构
[1] Vrije Univ, Amsterdam Univ, Dept Radiol & Nucl Med, Med Ctr, Amsterdam, Netherlands
[2] Amsterdam Neurosci, Brain Imaging, Amsterdam, Netherlands
[3] Mediri GmbH, Heidelberg, Germany
[4] Oslo Univ Hosp, Dept Phys & Computat Radiol, Div Radiol & Nucl Med, Oslo, Norway
[5] Oslo Univ Hosp, Norwegian Ctr Mental Disorders Res NORMENT, Oslo, Norway
[6] Univ Oslo, Dept Psychol, Oslo, Norway
[7] Diakonhjemmet Hosp, Dept Psychiat Res, Oslo, Norway
[8] Univ Oslo, KG Jebsen Ctr Neurodev Disorders, Oslo, Norway
[9] UCL, Queen Sq Inst Neurol, Dementia Res Ctr, London, England
[10] UCL, Comp Sci, Ctr Med Image Comp, London, England
[11] UCL, Queen Sq Inst Neurol, London, England
[12] UCL, Ctr Med Image Comp, London, England
[13] Helmholtz Zent Dresden Rossendorf, Inst Radiopharmaceut Canc Res, Dresden, Germany
基金
欧洲研究理事会;
关键词
ageing; ASL; brain age; cerebral perfusion; cerebrovascular health; machine learning; CEREBRAL-BLOOD-FLOW; ALZHEIMERS; SYSTEM;
D O I
10.1002/hbm.26242
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Current structural MRI-based brain age estimates and their difference from chronological age-the brain age gap (BAG)-are limited to late-stage pathological brain-tissue changes. The addition of physiological MRI features may detect early-stage pathological brain alterations and improve brain age prediction. This study investigated the optimal combination of structural and physiological arterial spin labelling (ASL) image features and algorithms. Healthy participants (n = 341, age 59.7 +/- 14.8 years) were scanned at baseline and after 1.7 +/- 0.5 years follow-up (n = 248, mean age 62.4 +/- 13.3 years). From 3 T MRI, structural (T1w and FLAIR) volumetric ROI and physiological (ASL) cerebral blood flow (CBF) and spatial coefficient of variation ROI features were constructed. Multiple combinations of features and machine learning algorithms were evaluated using the Mean Absolute Error (MAE). From the best model, longitudinal BAG repeatability and feature importance were assessed. The ElasticNetCV algorithm using T1w + FLAIR+ASL performed best (MAE = 5.0 +/- 0.3 years), and better compared with using T1w + FLAIR (MAE = 6.0 +/- 0.4 years, p < .01). The three most important features were, in descending order, GM CBF, GM/ICV, and WM CBF. Average baseline and follow-up BAGs were similar (-1.5 +/- 6.3 and - 1.1 +/- 6.4 years respectively, ICC = 0.85, 95% CI: 0.8-0.9, p = .16). The addition of ASL features to structural brain age, combined with the ElasticNetCV algorithm, improved brain age prediction the most, and performed best in a cross-sectional and repeatability comparison. These findings encourage future studies to explore the value of ASL in brain age in various pathologies.
引用
收藏
页码:2754 / 2766
页数:13
相关论文
共 50 条
  • [21] Characterizing the origin of the arterial spin labelling signal in MRI using a multiecho acquisition approach
    Wells, Jack A.
    Lythgoe, Mark F.
    Choy, Mankin
    Gadian, David G.
    Ordidge, Roger J.
    Thomas, David L.
    JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM, 2009, 29 (11) : 1836 - 1845
  • [22] MDMA "ecstasy' increases cerebral cortical perfusion determined by bolus-tracking arterial spin labelling (btASL) MRI
    Rouine, J.
    Gobbo, O. L.
    Campbell, M.
    Gigliucci, V.
    Ogden, I.
    Smith, K. McHugh
    Duffy, P.
    Behan, B.
    Byrne, D.
    Kelly, M. E.
    Blau, C. W.
    Kerskens, C. M.
    Harkin, A.
    BRITISH JOURNAL OF PHARMACOLOGY, 2013, 169 (05) : 974 - 987
  • [23] The Age-Related Perfusion Pattern Measured With Arterial Spin Labeling MRI in Healthy Subjects
    Zhang, Nan
    Gordon, Marc L.
    Ma, Yilong
    Chi, Bradley
    Gomar, Jesus J.
    Peng, Shichun
    Kingsley, Peter B.
    Eidelberg, David
    Goldberg, Terry E.
    FRONTIERS IN AGING NEUROSCIENCE, 2018, 10
  • [24] Addition of arterial spin-labelled MR perfusion to conventional brain MRI: clinical experience in a retrospective cohort study
    Belani, Puneet
    Kihira, Shingo
    Pacheco, Felipe
    Pawha, Puneet
    Cruciata, Giuseppe
    Nael, Kambiz
    BMJ OPEN, 2020, 10 (06):
  • [25] Arterial spin labeled perfusion MRI for the assessment of radiation-treated meningiomas
    Manning, Paul
    Srinivas, Shanmukha
    Bolar, Divya S.
    Rajaratnam, Matthew K.
    Piccioni, David E.
    McDonald, Carrie R.
    Hattangadi-Gluth, Jona A.
    Farid, Nikdokht
    FRONTIERS IN RADIOLOGY, 2024, 4
  • [26] Applications of arterial spin labeled MRI in the brain
    Detre, John A.
    Rao, Hengyi
    Wang, Danny J. J.
    Chen, Yu Fen
    Wang, Ze
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2012, 35 (05) : 1026 - 1037
  • [27] Trial of the cerebral perfusion response to sodium nitrite infusion in patients with acute subarachnoid haemorrhage using arterial spin labelling MRI
    Ezra, Martyn
    Franko, Edit
    Spronk, Desiree B.
    Lamb, Catherine
    Okell, Thomas W.
    Pattinson, Kyle TS.
    NITRIC OXIDE-BIOLOGY AND CHEMISTRY, 2024, 153 : 50 - 60
  • [28] Apathy in depression: An arterial spin labeling perfusion MRI study
    Batail, J. M.
    Corouge, I.
    Combes, B.
    Conan, C.
    Guillery-Sollier, M.
    Verin, M.
    Sauleau, P.
    Le Jeune, F.
    Gauvrit, J. Y.
    Robert, G.
    Barillot, C.
    Ferre, J. C.
    Drapier, D.
    JOURNAL OF PSYCHIATRIC RESEARCH, 2023, 157 : 7 - 16
  • [29] Arterial Spin Labeling Perfusion MRI in Alzheimer's Disease
    van Osch, Matthias J. P.
    Lu, Hanzhang
    CURRENT MEDICAL IMAGING, 2011, 7 (01) : 62 - 72
  • [30] Non-invasive MRI of brain clearance pathways using multiple echo time arterial spin labelling: an aquaporin-4 study
    Ohene, Yolanda
    Harrison, Ian F.
    Nahavandi, Payam
    Ismail, Ozama
    Bird, Eleanor, V
    Ottersen, Ole P.
    Nagelhus, Erlend A.
    Thomas, David L.
    Lythgoe, Mark F.
    Wells, Jack A.
    NEUROIMAGE, 2019, 188 : 515 - 523