Cauchy transform and uniform approximation by polynomial modules

被引:0
作者
Yang, Liming [1 ]
机构
[1] Virginia Polytech Inst & State Univ, Dept Math, Blacksburg, VA 24061 USA
关键词
Analytic capacity; Cauchy transform; Polynomial modulus; ANALYTIC CAPACITY; SEMIADDITIVITY;
D O I
10.1016/j.jmaa.2023.127004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a compact subset K of the complex plane C, let C(K) denote the algebra of continuous functions on K. For an open subset U C K, let A(K, U) C C(K) be the algebra of functions that are analytic in U. We show that there exists phi E A(K, U) so that each f E A(K, U) can uniformly be approximated by {pn + qn phi} on K, where pn and qn are analytic polynomials in z. In particular, phi can be chosen as a Cauchy transform of a finite positive measure eta compactly supported in C \ U. Recent developments of analytic capacity and Cauchy transform provide us useful tools in our proofs.
引用
收藏
页数:21
相关论文
共 50 条
[21]   Multivalued Analytic Continuation of the Cauchy Transform [J].
Lavi Karp .
Potential Analysis, 2006, 24 :1-13
[22]   Norm estimate of the Cauchy transform on Lp(Ω) [J].
Dostanic, MR .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 2005, 52 (04) :465-475
[23]   Multivalued analytic continuation of the Cauchy transform [J].
Karp, L .
POTENTIAL ANALYSIS, 2006, 24 (01) :1-13
[24]   Uniform approximation by meromorphic functions on Riemann surfaces [J].
A. Boivin ;
B. Jiang .
Journal d’Analyse Mathématique, 2004, 93 :199-214
[25]   The norm and regularized trace of the Cauchy transform [J].
Dostanic, MR .
MATHEMATICAL NOTES, 2005, 77 (5-6) :777-786
[26]   RATIONAL MODULES AND CAUCHY TRANSFORMS .2. [J].
WANG, JLM .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 115 (02) :405-408
[27]   The Cauchy Transform on the Bergman–Dirichlet SpacesThe Cauchy Transform on the Bergman–Dirichlet SpacesA. Benahmadi et al. [J].
Abdelhadi Benahmadi ;
Abdellatif Elkachkouri ;
Allal Ghanmi .
Mediterranean Journal of Mathematics, 2025, 22 (4)
[28]   Norm estimates of the Cauchy transform and related operators [J].
Zhu, Jian-Feng ;
Kalaj, David .
JOURNAL OF FUNCTIONAL ANALYSIS, 2020, 279 (09)
[29]   Cauchy transform on nonrectifiable surfaces in Clifford analysis [J].
Abreu-Blaya, R. ;
Bory-Reyes, J. ;
Moreno-Garcia, T. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 339 (01) :31-44
[30]   A Cauchy transform for polyanalytic functions on fractal domains [J].
Gomez Santiesteban, Tania Rosa ;
Abreu Blaya, Ricardo ;
Bory Reyes, Juan ;
Sigarreta Almira, Jose Maria .
ANNALES POLONICI MATHEMATICI, 2018, 121 (01) :21-32