共 50 条
Predicting Material Properties of Methane Hydrates with Cubic Crystal Structure Using Molecular Simulations
被引:0
|作者:
Lorenz, Tommy
[1
]
Jaeger, Andreas
[2
]
Breitkopf, Cornelia
[1
]
机构:
[1] Tech Univ Dresden, Inst Energietechn, Prof Tech Thermodynam, Helmholtzstr 14, D-01069 Dresden, Germany
[2] Tech Univ Dresden, Inst Energietechn, Therm Energiemaschinen & Anlagen, Helmholtzstr 14, D-01069 Dresden, Germany
关键词:
Bulk modulus;
Cell potential;
Density-functional tight-binding;
Methane hydrates;
DENSITY-FUNCTIONAL THEORY;
NEXT-GENERATION;
PHASE-EQUILIBRIA;
FUGACITY MODEL;
GAS;
SI;
POTENTIALS;
PRESSURE;
ARGON;
D O I:
10.1002/cite.202200160
中图分类号:
TQ [化学工业];
学科分类号:
0817 ;
摘要:
Formation of gas hydrates is an important feature of water systems. It occurs undesirably in natural gas pipelines, but also in deep-sea deposits and unfreezing permafrost. However, the natural occurrence is of particular interest because methane hydrates have one of the highest energy densities of all naturally occurring forms of methane. Therefore, an accurate description of its thermodynamic properties is required. In this work, we demonstrate how the material properties of methane hydrate can be more easily calculated compared to ab initio methods. Furthermore, it is shown how the material properties depend on the cage occupancy by using the comparably fast self-consistent-charge density-functional tight-binding (SCC-DFTB) method. The cell potential is calculated and compared to a numerical as well as an ab initio model, and is in good agreement with the literature.
引用
收藏
页码:344 / 352
页数:9
相关论文