Predicting Material Properties of Methane Hydrates with Cubic Crystal Structure Using Molecular Simulations

被引:0
|
作者
Lorenz, Tommy [1 ]
Jaeger, Andreas [2 ]
Breitkopf, Cornelia [1 ]
机构
[1] Tech Univ Dresden, Inst Energietechn, Prof Tech Thermodynam, Helmholtzstr 14, D-01069 Dresden, Germany
[2] Tech Univ Dresden, Inst Energietechn, Therm Energiemaschinen & Anlagen, Helmholtzstr 14, D-01069 Dresden, Germany
关键词
Bulk modulus; Cell potential; Density-functional tight-binding; Methane hydrates; DENSITY-FUNCTIONAL THEORY; NEXT-GENERATION; PHASE-EQUILIBRIA; FUGACITY MODEL; GAS; SI; POTENTIALS; PRESSURE; ARGON;
D O I
10.1002/cite.202200160
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Formation of gas hydrates is an important feature of water systems. It occurs undesirably in natural gas pipelines, but also in deep-sea deposits and unfreezing permafrost. However, the natural occurrence is of particular interest because methane hydrates have one of the highest energy densities of all naturally occurring forms of methane. Therefore, an accurate description of its thermodynamic properties is required. In this work, we demonstrate how the material properties of methane hydrate can be more easily calculated compared to ab initio methods. Furthermore, it is shown how the material properties depend on the cage occupancy by using the comparably fast self-consistent-charge density-functional tight-binding (SCC-DFTB) method. The cell potential is calculated and compared to a numerical as well as an ab initio model, and is in good agreement with the literature.
引用
收藏
页码:344 / 352
页数:9
相关论文
共 50 条
  • [31] Crystal-structure properties and the molecular nature of hydrostatically compressed realgar
    Clivia Hejny
    Raffaela Sagl
    Daniel M. Többens
    Ronald Miletich
    Manfred Wildner
    Lutz Nasdala
    Angela Ullrich
    Tonci Balic-Zunic
    Physics and Chemistry of Minerals, 2012, 39 : 399 - 412
  • [32] Atomic Diffusion and Crystal Structure Evolution at the Fe-Ti Interface: Molecular Dynamics Simulations
    Xiang, Guojin
    Luo, Xu
    Cao, Tianxu
    Zhang, Ankang
    Yu, Hui
    MATERIALS, 2022, 15 (18)
  • [33] Predicting phonon properties and thermal conductivity from anharmonic lattice dynamics calculations and molecular dynamics simulations
    Turney, J. E.
    Landry, E. S.
    McGaughey, A. J. H.
    Amon, C. H.
    PHYSICAL REVIEW B, 2009, 79 (06)
  • [34] Seawater-based methane storage via mixed CH4/1,3-dioxane hydrates: Insights from experimental and molecular dynamic simulations
    Wu, Yongji
    Zhang, Ye
    Bhattacharjee, Gaurav
    He, Yurong
    Zhai, Ming
    Linga, Praveen
    CHEMICAL ENGINEERING JOURNAL, 2024, 479
  • [35] Crystal effects in the vibrational spectra of one-dimensional molecular spin crossover crystals using molecular dynamics simulations
    Herz, Jakob
    Meyer, Robert
    Wolny, Juliusz A.
    Schuenemann, Volker
    Urbassek, Herbert M. M.
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2023, 129 (05):
  • [36] Molecular dynamics simulation of methane hydrates: Prediction of the phase equilibria using extracted microscopic parameters from SAFT-VR Mie EOS
    Sharifipour, Milad
    Nakhaee, Ali
    FLUID PHASE EQUILIBRIA, 2024, 582
  • [37] Molecular simulation of collection of methane isotherms in carbon material using all-atom and united atom models
    Lucena, Sebastiao M. P.
    Frutuoso, Luis F. A.
    Silvino, Pedro F. G.
    Azevedo, Diana C. S.
    Toso, J. P.
    Zgrablich, G.
    Cavalcante, Celio L., Jr.
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2010, 357 (1-3) : 53 - 60
  • [38] Influence of the Periodic Boundary Conditions on the Fluid Structure and on the Thermodynamic Properties Computed from the Molecular Simulations
    Janecek, J.
    OIL & GAS SCIENCE AND TECHNOLOGY-REVUE D IFP ENERGIES NOUVELLES, 2013, 68 (02): : 271 - 279
  • [39] Fracture properties of nanoscale single-crystal silicon plates: Molecular dynamics simulations and finite element method
    Wei, Yu
    Li, Yongheng
    Huang, Dandan
    Zhou, Chujia
    Zhao, Junhua
    ENGINEERING FRACTURE MECHANICS, 2018, 202 : 1 - 19
  • [40] Predicting binding affinity changes from long-distance mutations using molecular dynamics simulations and Rosetta
    Wells, Nicholas G. M.
    Smith, Colin A.
    PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2023, 91 (07) : 920 - 932