Generalized Fractional Integral Operators Based on Symmetric Markovian Semigroups with Application to the Heisenberg Group

被引:0
|
作者
Amagai, Kohei [1 ]
Nakai, Eiichi [2 ]
Sadasue, Gaku [3 ]
机构
[1] Kandatsuchuo 3-3-14,203, Tsuchiura, Ibaraki 3000011, Japan
[2] Ibaraki Univ, Dept Math, Mito, Ibaraki 3108512, Japan
[3] Osaka Kyoiku Univ, Dept Math, Osaka 5828582, Japan
来源
TAIWANESE JOURNAL OF MATHEMATICS | 2023年 / 27卷 / 01期
基金
日本学术振兴会;
关键词
Markovian semigroup; Varopoulos dimension; fractional integral; Orlicz space; Heisenberg group; space of homogeneous type; BROWNIAN-MOTION; MORREY SPACES; ORLICZ; INEQUALITIES;
D O I
10.11650/tjm/220904
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is known that the fractional integral operator I-alpha based on a symmetric Markovian semigroup with Varopoulos dimension d is bounded from L-p to L-q, if 0 < alpha < d, 1 < p < q < infinity and -d/p + alpha = -d/q, like the usual fractional integral operator defined on the d dimensional Euclidean space. We introduce generalized fractional integral operators based on symmetric Markovian semigroups and extend the L-p-L-q boundedness to Orlicz spaces. We also apply the result to the semigroup associated with the diffusion process generated by the sub-Laplacian on the Heisenberg group. Moreover, we show necessary and sufficient conditions for the boundedness of the generalized fractional integral operator on the space of homogeneous type and apply them to the Heisenberg group.
引用
收藏
页码:113 / 139
页数:27
相关论文
共 50 条
  • [41] Characterization of the boundedness of generalized fractional integral and maximal operators on Orlicz-Morrey and weak Orlicz-Morrey spaces
    Kawasumi, Ryota
    Nakai, Eiichi
    Shi, Minglei
    MATHEMATISCHE NACHRICHTEN, 2023, 296 (04) : 1483 - 1503
  • [42] GENERALIZED OPIAL-TYPE INEQUALITIES FOR DIFFERENTIAL AND INTEGRAL OPERATORS WITH SPECIAL KERNELS IN FRACTIONAL CALCULUS
    Farid, G.
    Pecaric, J.
    Tomovski, Z.
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2016, 10 (04): : 1019 - 1040
  • [43] Sharp maximal function inequalities and boundedness for commutators related to generalized fractional singular integral operators
    Gu, Guangze
    Cai, Mingjie
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2014, : 1 - 13
  • [44] New computations for extended weighted functionals within the Hilfer generalized proportional fractional integral operators
    Zhou, Shuang-Shuang
    Rashid, Saima
    Parveen, Saima
    Akdemir, Ahmet Ocak
    Hammouch, Zakia
    AIMS MATHEMATICS, 2021, 6 (05): : 4507 - 4525
  • [45] New cyclic groups based on the generalized order-k Pell sequences in the Heisenberg group and their application in cryptography
    Mehraban, Elahe
    Gulliver, T. Aaron
    Hincal, Evren
    APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 2024,
  • [46] MULTILINEAR BMO ESTIMATES FOR THE COMMUTATORS OF MULTILINEAR FRACTIONAL MAXIMAL AND INTEGRAL OPERATORS ON THE PRODUCT GENERALIZED MORREY SPACES
    Gurbuz, Ferit
    INTERNATIONAL JOURNAL OF ANALYSIS AND APPLICATIONS, 2019, 17 (04): : 596 - 619
  • [47] On Bounds of fractional integral operators containing Mittag-Leffler functions for generalized exponentially convex functions
    Saddiqa, Maryam
    Farid, Ghulam
    Ullah, Saleem
    Jung, Chahn Yong
    Shim, Soo Hak
    AIMS MATHEMATICS, 2021, 6 (06): : 6454 - 6468
  • [48] Generalized fractional integral operators on variable exponent Morrey type spaces over metric measure spaces
    Ohno, Takao
    Shimomura, Tetsu
    PORTUGALIAE MATHEMATICA, 2022, 79 (3-4) : 265 - 282
  • [49] Some new generalizations for exponentially (s, m)-preinvex functions considering generalized fractional integral operators
    Safdar, Farhat
    Attique, Muhammad
    PUNJAB UNIVERSITY JOURNAL OF MATHEMATICS, 2021, 53 (12): : 861 - 879
  • [50] SOME NEW ESTIMATES FOR EXPONENTIALLY (h;m)-CONVEX FUNCTIONS VIA EXTENDED GENERALIZED FRACTIONAL INTEGRAL OPERATORS
    Rashid, Saima
    Noor, Muhammad Aslam
    Noor, Khalida Inayat
    KOREAN JOURNAL OF MATHEMATICS, 2019, 27 (04): : 843 - 860