Deep learning-based vehicle trajectory prediction based on generative adversarial network for autonomous driving applications

被引:8
|
作者
Hsu, Chih-Chung [1 ]
Kang, Li-Wei [2 ]
Chen, Shih-Yu [3 ]
Wang, I-Shan [3 ]
Hong, Ching-Hao [4 ]
Chang, Chuan-Yu [3 ]
机构
[1] Natl Cheng Kung Univ, Inst Data Sci, Tainan, Taiwan
[2] Natl Taiwan Normal Univ, Dept Elect Engn, Taipei, Taiwan
[3] Natl Yunlin Univ Sci & Technol, Dept Comp Sci & Informat Engn, Touliu, Yunlin, Taiwan
[4] Natl Pingtung Univ Sci & Technol, Dept Management Informat Syst, Pingtung, Taiwan
关键词
Autonomous vehicles; Self-driving cars; Vehicle trajectory; Deep learning; Generative adversarial networks; Deep social learning networks; BEHAVIOR;
D O I
10.1007/s11042-022-13742-x
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Autonomous vehicles need to continuously navigate complex traffic environments by efficiently analyzing the surrounding scene, understanding the behavior of other traffic agents, and predicting their future trajectories. The primary objective is to draw up a safe motion and reduce the reaction time for possibly imminent hazards. The main problem addressed in this paper is to explore the movement patterns of surrounding traffic-agents and accurately predict their future trajectories for assisting the vehicle to make a reasonable decision. Traditional trajectory prediction modules require explicit coordinate information to model the interaction between the autonomous car and its surrounding vehicles. However, it is hard to know the real coordinate of surrounding vehicles in real-world scenarios without communications between vehicles. A GAN (generative adversarial network)-based deep learning framework is presented in this paper for predicting the trajectories of surrounding vehicles of an autonomous vehicle in an RGB image sequence without explicit coordinate annotation to solve this problem. To automatically predict the trajectory from RGB image sequences, a coordinate augmentation module and a coordinate stabilization module are proposed to extract the historical trajectory from an image sequence. Meanwhile, the self-attention mechanism is also proposed to improve the social pooling module for better capturing the context information of trajectories of surrounding vehicles. Experimental results are demonstrated that the proposed method is effective and efficient.
引用
收藏
页码:10763 / 10780
页数:18
相关论文
共 50 条
  • [41] Unsupervised Transfer Learning For Video Prediction Based on Generative Adversarial Network
    Shi, Jiwen
    Zhu, Qiuguo
    Wu, Jun
    2021 27TH INTERNATIONAL CONFERENCE ON MECHATRONICS AND MACHINE VISION IN PRACTICE (M2VIP), 2021,
  • [42] Deep-learning-based vehicle trajectory prediction: A review
    Yin, Chenhui
    Cecotti, Marco
    Auger, Daniel J.
    Fotouhi, Abbas
    Jiang, Haobin
    IET INTELLIGENT TRANSPORT SYSTEMS, 2025, 19 (01)
  • [43] A Review of Deep Learning-Based Methods for Pedestrian Trajectory Prediction
    Sighencea, Bogdan Ilie
    Stanciu, Rarea Ion
    Caleanu, Catalin Daniel
    SENSORS, 2021, 21 (22)
  • [44] Deep Learning-Based Multimodal Trajectory Prediction with Traffic Light
    Lee, Seoyoung
    Park, Hyogyeong
    You, Yeonhwi
    Yong, Sungjung
    Moon, Il-Young
    APPLIED SCIENCES-BASEL, 2023, 13 (22):
  • [45] Backdoor Attack Against Deep Learning-Based Autonomous Driving with Fogging
    Liu, Jianming
    Luo, Li
    Wang, Xueyan
    ARTIFICIAL INTELLIGENCE AND ROBOTICS, ISAIR 2022, PT II, 2022, 1701 : 247 - 256
  • [46] Deep learning-based perception systems for autonomous driving: A comprehensive survey
    Wen, Li-Hua
    Jo, Kang-Hyun
    NEUROCOMPUTING, 2022, 489 : 255 - 270
  • [47] Multi Attention Generative Adversarial Network for Pedestrian Trajectory Prediction Based on Spatial Gridding
    An, Huihui
    Liu, Miao
    Wang, Xiaolan
    Zhang, Weiwei
    Gong, Jun
    AUTOMOTIVE INNOVATION, 2024, 7 (03) : 443 - 455
  • [48] Multi-Object Trajectory Prediction Based on Lane Information and Generative Adversarial Network
    Guo, Lie
    Ge, Pingshu
    Shi, Zhenzhou
    SENSORS, 2024, 24 (04)
  • [49] Deep Learning-Based Autonomous Driving Systems: A Survey of Attacks and Defenses
    Deng, Yao
    Zhang, Tiehua
    Lou, Guannan
    Zheng, Xi
    Jin, Jiong
    Han, Qing-Long
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2021, 17 (12) : 7897 - 7912
  • [50] Learning-Based Fast Electromagnetic Scattering Solver Through Generative Adversarial Network
    Ma, Zhenchao
    Xu, Kuiwen
    Song, Rencheng
    Wang, Chao-Fu
    Chen, Xudong
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2021, 69 (04) : 2194 - 2208