Deep learning-based vehicle trajectory prediction based on generative adversarial network for autonomous driving applications

被引:8
|
作者
Hsu, Chih-Chung [1 ]
Kang, Li-Wei [2 ]
Chen, Shih-Yu [3 ]
Wang, I-Shan [3 ]
Hong, Ching-Hao [4 ]
Chang, Chuan-Yu [3 ]
机构
[1] Natl Cheng Kung Univ, Inst Data Sci, Tainan, Taiwan
[2] Natl Taiwan Normal Univ, Dept Elect Engn, Taipei, Taiwan
[3] Natl Yunlin Univ Sci & Technol, Dept Comp Sci & Informat Engn, Touliu, Yunlin, Taiwan
[4] Natl Pingtung Univ Sci & Technol, Dept Management Informat Syst, Pingtung, Taiwan
关键词
Autonomous vehicles; Self-driving cars; Vehicle trajectory; Deep learning; Generative adversarial networks; Deep social learning networks; BEHAVIOR;
D O I
10.1007/s11042-022-13742-x
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Autonomous vehicles need to continuously navigate complex traffic environments by efficiently analyzing the surrounding scene, understanding the behavior of other traffic agents, and predicting their future trajectories. The primary objective is to draw up a safe motion and reduce the reaction time for possibly imminent hazards. The main problem addressed in this paper is to explore the movement patterns of surrounding traffic-agents and accurately predict their future trajectories for assisting the vehicle to make a reasonable decision. Traditional trajectory prediction modules require explicit coordinate information to model the interaction between the autonomous car and its surrounding vehicles. However, it is hard to know the real coordinate of surrounding vehicles in real-world scenarios without communications between vehicles. A GAN (generative adversarial network)-based deep learning framework is presented in this paper for predicting the trajectories of surrounding vehicles of an autonomous vehicle in an RGB image sequence without explicit coordinate annotation to solve this problem. To automatically predict the trajectory from RGB image sequences, a coordinate augmentation module and a coordinate stabilization module are proposed to extract the historical trajectory from an image sequence. Meanwhile, the self-attention mechanism is also proposed to improve the social pooling module for better capturing the context information of trajectories of surrounding vehicles. Experimental results are demonstrated that the proposed method is effective and efficient.
引用
收藏
页码:10763 / 10780
页数:18
相关论文
共 50 条
  • [1] Deep learning-based vehicle trajectory prediction based on generative adversarial network for autonomous driving applications
    Chih-Chung Hsu
    Li-Wei Kang
    Shih-Yu Chen
    I-Shan Wang
    Ching-Hao Hong
    Chuan-Yu Chang
    Multimedia Tools and Applications, 2023, 82 : 10763 - 10780
  • [2] Deep Learning-Based Vehicle Behavior Prediction for Autonomous Driving Applications: A Review
    Mozaffari, Sajjad
    Al-Jarrah, Omar Y.
    Dianati, Mehrdad
    Jennings, Paul
    Mouzakitis, Alexandros
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (01) : 33 - 47
  • [3] Vehicle Trajectory Prediction based on Social Generative Adversarial Network for Self-Driving Car Applications
    Kang, Li-Wei
    Hsu, Chih-Chung
    Wang, I-Shan
    Liu, Ting-Lei
    Chen, Shih-Yu
    Chang, Chuan-Yu
    2020 INTERNATIONAL SYMPOSIUM ON COMPUTER, CONSUMER AND CONTROL (IS3C 2020), 2021, : 489 - 492
  • [4] A Review of Deep Learning-Based Vehicle Motion Prediction for Autonomous Driving
    Huang, Renbo
    Zhuo, Guirong
    Xiong, Lu
    Lu, Shouyi
    Tian, Wei
    SUSTAINABILITY, 2023, 15 (20)
  • [5] An Enhanced Driving Trajectory Prediction Method Based on Generative Adversarial Imitation Learning
    Liu, Ming
    Lin, Fanrong
    Zhang, Zhen
    Jia, Yungang
    Cui, Jianming
    ADVANCED INTELLIGENT COMPUTING TECHNOLOGY AND APPLICATIONS, PT V, ICIC 2024, 2024, 14879 : 179 - 190
  • [6] Deep Learning Based Trajectory Prediction in Autonomous Driving Tasks: A survey
    Xing, Haolin
    Liu, Wei
    Ning, Zuotao
    Zhao, Qixi
    Cheng, Shuai
    Hu, Jun
    2024 16TH INTERNATIONAL CONFERENCE ON COMPUTER AND AUTOMATION ENGINEERING, ICCAE 2024, 2024, : 556 - 561
  • [7] Deep encoder-decoder-NN: A deep learning-based autonomous vehicle trajectory prediction and correction model
    Fei Hui
    Cheng Wei
    Wei ShangGuan
    Ando, Ryosuke
    Shan Fang
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2022, 593
  • [8] A Deep Learning-Based Semantic Segmentation Architecture for Autonomous Driving Applications
    Masood, Sharjeel
    Ahmed, Fawad
    Alsuhibany, Suliman A.
    Ghadi, Yazeed Yasin
    Siyal, M. Y.
    Kumar, Harish
    Khan, Khyber
    Ahmad, Jawad
    WIRELESS COMMUNICATIONS & MOBILE COMPUTING, 2022, 2022
  • [9] A prediction model of vessel trajectory based on generative adversarial network
    Wang, Senjie
    He, Zhengwei
    JOURNAL OF NAVIGATION, 2021, 74 (05): : 1161 - 1171
  • [10] DSA-GAN: Driving Style Attention Generative Adversarial Network for Vehicle Trajectory Prediction
    Choi, Seungwon
    Kweon, Nahyun
    Yang, Chanuk
    Kim, Dongchan
    Shon, Hyukju
    Choi, Jaewoong
    Huh, Kunsoo
    2021 IEEE INTELLIGENT TRANSPORTATION SYSTEMS CONFERENCE (ITSC), 2021, : 1515 - 1520