Application of bi-directional long-short-term memory network in cognitive age prediction based on EEG signals

被引:0
作者
Wong, Shi-Bing [1 ,2 ]
Tsao, Yu [3 ]
Tsai, Wen-Hsin [1 ,2 ]
Wang, Tzong-Shi [2 ,4 ]
Wu, Hsin-Chi [2 ,5 ]
Wang, Syu-Siang [6 ]
机构
[1] Taipei Tzu Chi Hosp, Buddhist Tzu Chi Med Fdn, Dept Pediat, New Taipei City, Taiwan
[2] Tzu Chi Univ, Sch Med, Hualien, Taiwan
[3] Acad Sinica, Res Ctr Informat Technol Innovat, Taipei, Taiwan
[4] Taipei Tzu Chi Hosp, Buddhist Tzu Chi Med Fdn, Dept Psychiat, New Taipei City, Taiwan
[5] Taipei Tzu Chi Hosp, Buddhist Tzu Chi Med Fdn, Dept Phys Med & Rehabil, New Taipei City, Taiwan
[6] Yuan Ze Univ, Dept Elect Engn, Taoyuan, Taiwan
来源
SCIENTIFIC REPORTS | 2023年 / 13卷 / 01期
关键词
BRAIN AGE; DEVELOPMENTAL DELAY; ELECTROENCEPHALOGRAM; CHILDREN; LSTM;
D O I
暂无
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Electroencephalography (EEG) measures changes in neuronal activity and can reveal significant changes from infancy to adulthood concomitant with brain maturation, making it a potential physiological marker of brain maturation and cognition. To investigate a promising deep learning tool for EEG classification, we applied the bidirectional long short-term memory (BLSTM) algorithm to analyze EEG data from the pediatric EEG laboratory of Taipei Tzu Chi Hospital. The trained BLSTM model was 86% accurate when identifying EEGs from young children (8 months-6 years) and adolescents (12-20 years). However, there was only a modest classification accuracy (69.3%) when categorizing EEG samples into three age groups (8 months-6 years, 6-12 years, and 12-20 years). For EEG samples from patients with intellectual disability, the prediction accuracy of the trained BLSTM model was 46.4%, which was significantly lower than its accuracy for EEGs from neurotypical patients, indicating that the individual's intelligence plays a major role in the age prediction. This study confirmed that scalp EEG can reflect brain maturation and the BLSTM algorithm is a feasible deep learning tool for the identification of cognitive age. The trained model can potentially be applied to clinical services as a supportive measurement of neurodevelopmental status.
引用
收藏
页数:10
相关论文
共 46 条
  • [1] Al Sawaf A., 2021, EEG basal cortical rhythms. StatPearls
  • [2] Prediction of brain age and cognitive age: Quantifying brain and cognitive maintenance in aging
    Anaturk, Melis
    Kaufmann, Tobias
    Cole, James H.
    Suri, Sana
    Griffanti, Ludovica
    Zsoldos, Eniko
    Filippini, Nicola
    Singh-Manoux, Archana
    Kivimaki, Mika
    Westlye, Lars T.
    Ebmeier, Klaus P.
    de Lange, Ann-Marie G.
    [J]. HUMAN BRAIN MAPPING, 2021, 42 (06) : 1626 - 1640
  • [3] Interpreting EEG alpha activity
    Bazanova, O. M.
    Vernon, D.
    [J]. NEUROSCIENCE AND BIOBEHAVIORAL REVIEWS, 2014, 44 : 94 - 110
  • [4] Editorial introduction to the Neural Networks special issue on Deep Learning of Representations
    Bengio, Yoshua
    Lee, Honglak
    [J]. NEURAL NETWORKS, 2015, 64 : 1 - 3
  • [5] Graph Transformer Geometric Learning of Brain Networks Using Multimodal MR Images for Brain Age Estimation
    Cai, Hongjie
    Gao, Yue
    Liu, Manhua
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2023, 42 (02) : 456 - 466
  • [6] Assessment of neonatal EEG background and neurodevelopment in full-term small for their gestational age infants
    Castro Conde, Jose R.
    Gonzalez Campo, Candelaria
    Gonzalez Gonzalez, Nieves L.
    Reyes Millan, Beatriz
    Gonzalez Barrios, Desire
    Jimenez Sosa, Alejandro
    Quintero Fuentes, Itziar
    [J]. PEDIATRIC RESEARCH, 2020, 88 (01) : 91 - 99
  • [7] Chen X., 2011, 2011 5 INT C BIOINF
  • [8] Prediction of Neurodevelopment in Infants With Tuberous Sclerosis Complex Using Early EEG Characteristics
    De Ridder, Jessie
    Lavanga, Mario
    Verhelle, Birgit
    Vervisch, Jan
    Lemmens, Katrien
    Kotulska, Katarzyna
    Moavero, Romina
    Curatolo, Paolo
    Weschke, Bernhard
    Riney, Kate
    Feucht, Martha
    Krsek, Pavel
    Nabbout, Rima
    Jansen, Anna C.
    Wojdan, Konrad
    Domanska-Pakiela, Dorota
    Kaczorowska-Frontczak, Magdalena
    Hertzberg, Christoph
    Ferrier, Cyrille H.
    Samueli, Sharon
    Benova, Barbora
    Aronica, Eleonora
    Kwiatkowski, David J.
    Jansen, Floor E.
    Jozwiak, Sergiusz
    Van Huffel, Sabine
    Lagae, Lieven
    [J]. FRONTIERS IN NEUROLOGY, 2020, 11
  • [9] Mining Time-Resolved Functional Brain Graphs to an EEG- Based Chronnectomic Brain Aged Index (CBAI)
    Dimitriadis, Stavros I.
    Salis, Christos I.
    [J]. FRONTIERS IN HUMAN NEUROSCIENCE, 2017, 11
  • [10] An Effective LSTM Recurrent Network to Detect Arrhythmia on Imbalanced ECG Dataset
    Gao, Junli
    Zhang, Hongpo
    Lu, Peng
    Wang, Zongmin
    [J]. JOURNAL OF HEALTHCARE ENGINEERING, 2019, 2019