Non-classical microwave-optical photon pair generation with a chip-scale transducer

被引:25
作者
Meesala, Srujan [1 ,2 ]
Wood, Steven [1 ,2 ]
Lake, David [1 ,2 ]
Chiappina, Piero [1 ,2 ]
Zhong, Changchun [3 ,6 ]
Beyer, Andrew D. [4 ]
Shaw, Matthew D. [4 ]
Jiang, Liang [3 ]
Painter, Oskar [1 ,2 ,5 ]
机构
[1] CALTECH, Kavli Nanosci Inst & Thomas J Watson Sr, Lab Appl Phys, Pasadena, CA 91125 USA
[2] CALTECH, Inst Quantum Informat & Matter, Pasadena, CA 91125 USA
[3] Univ Chicago, Pritzker Sch Mol Engn, Chicago, IL USA
[4] CALTECH, Jet Prop Lab, Pasadena, CA USA
[5] Amazon Web Serv, Ctr Quantum Comp, Pasadena, CA 91106 USA
[6] Xi An Jiao Tong Univ, Dept Phys, Xian, Peoples R China
基金
中国国家自然科学基金;
关键词
QUANTUM STATE TRANSFER; SUPERCONDUCTING-QUBIT; ENTANGLEMENT; COMMUNICATION; NOISE;
D O I
10.1038/s41567-024-02409-z
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Modern computing and communication technologies such as supercomputers and the Internet are based on optically connected networks of microwave-frequency information processors. An analogous architecture has been proposed for quantum networks, using optical photons to distribute entanglement between remote superconducting quantum processors. Here we report a step towards such a network by observing non-classical correlations between photons in an optical link and a superconducting quantum device. We generate these states of light through a spontaneous parametric down-conversion process in a chip-scale piezo-optomechanical transducer, and we measure a microwave-optical cross-correlation exceeding the Cauchy-Schwarz classical bound for thermal states. As further evidence of the non-classical character of the microwave-optical photon pairs, we observe antibunching in the microwave state conditioned on detection of an optical photon. Such a transducer can be readily connected to an independent superconducting qubit module and serve as a key building block for optical quantum networks of microwave-frequency qubits. A transducer that generates microwave-optical photon pairs is demonstrated. This could provide an interface between optical communication networks and superconducting quantum devices that operate at microwave frequencies.
引用
收藏
页码:871 / 877
页数:8
相关论文
共 50 条
[41]   A nondestructive Bell-state measurement on two distant atomic qubits [J].
Welte, Stephan ;
Thomas, Philip ;
Hartung, Lukas ;
Daiss, Severin ;
Langenfeld, Stefan ;
Morin, Olivier ;
Rempe, Gerhard ;
Distante, Emanuele .
NATURE PHOTONICS, 2021, 15 (07) :504-509
[42]   Strong Quantum Computational Advantage Using a Superconducting Quantum Processor [J].
Wu, Yulin ;
Bao, Wan-Su ;
Cao, Sirui ;
Chen, Fusheng ;
Chen, Ming-Cheng ;
Chen, Xiawei ;
Chung, Tung-Hsun ;
Deng, Hui ;
Du, Yajie ;
Fan, Daojin ;
Gong, Ming ;
Guo, Cheng ;
Guo, Chu ;
Guo, Shaojun ;
Han, Lianchen ;
Hong, Linyin ;
Huang, He-Liang ;
Huo, Yong-Heng ;
Li, Liping ;
Li, Na ;
Li, Shaowei ;
Li, Yuan ;
Liang, Futian ;
Lin, Chun ;
Lin, Jin ;
Qian, Haoran ;
Qiao, Dan ;
Rong, Hao ;
Su, Hong ;
Sun, Lihua ;
Wang, Liangyuan ;
Wang, Shiyu ;
Wu, Dachao ;
Xu, Yu ;
Yan, Kai ;
Yang, Weifeng ;
Yang, Yang ;
Ye, Yangsen ;
Yin, Jianghan ;
Ying, Chong ;
Yu, Jiale ;
Zha, Chen ;
Zhang, Cha ;
Zhang, Haibin ;
Zhang, Kaili ;
Zhang, Yiming ;
Zhao, Han ;
Zhao, Youwei ;
Zhou, Liang ;
Zhu, Qingling .
PHYSICAL REVIEW LETTERS, 2021, 127 (18)
[43]   Frequency-tunable high-Q superconducting resonators via wireless control of nonlinear kinetic inductance [J].
Xu, Mingrui ;
Han, Xu ;
Fu, Wei ;
Zou, Chang-Ling ;
Devoret, Michel H. ;
Tang, Hong X. .
APPLIED PHYSICS LETTERS, 2019, 114 (19)
[44]   Bidirectional interconversion of microwave and light with thin-film lithium niobate [J].
Xu, Yuntao ;
Sayem, Ayed Al ;
Fan, Linran ;
Zou, Chang-Ling ;
Wang, Sihao ;
Cheng, Risheng ;
Fu, Wei ;
Yang, Likai ;
Xu, Mingrui ;
Tang, Hong X. .
NATURE COMMUNICATIONS, 2021, 12 (01)
[45]   Entanglement of two quantum memories via fibres over dozens of kilometres [J].
Yu, Yong ;
Ma, Fei ;
Luo, Xi-Yu ;
Jing, Bo ;
Sun, Peng-Fei ;
Fang, Ren-Zhou ;
Yang, Chao-Wei ;
Liu, Hui ;
Zheng, Ming-Yang ;
Xie, Xiu-Ping ;
Zhang, Wei-Jun ;
You, Li-Xing ;
Wang, Zhen ;
Chen, Teng-Yun ;
Zhang, Qiang ;
Bao, Xiao-Hui ;
Pan, Jian-Wei .
NATURE, 2020, 578 (7794) :240-+
[46]   Electro-optic transduction in silicon via gigahertz-frequency nanomechanics [J].
Zhao, Han ;
Bozkurt, Alkim ;
Mirhosseini, Mohammad .
OPTICA, 2023, 10 (06) :790-796
[47]   Microwave and Optical Entanglement for Quantum Transduction with Electro-Optomechanics [J].
Zhong, Changchun ;
Han, Xu ;
Jiang, Liang .
PHYSICAL REVIEW APPLIED, 2022, 18 (05)
[48]   Entanglement of microwave-optical modes in a strongly coupled electro-optomechanical system [J].
Zhong, Changchun ;
Han, Xu ;
Tang, Hong X. ;
Jiang, Liang .
PHYSICAL REVIEW A, 2020, 101 (03)
[49]   Proposal for Heralded Generation and Detection of Entangled Microwave-Optical-Photon Pairs [J].
Zhong, Changchun ;
Wang, Zhixin ;
Zou, Changling ;
Zhang, Mengzhen ;
Han, Xu ;
Fu, Wei ;
Xu, Mingrui ;
Shankar, S. ;
Devoret, Michel H. ;
Tang, Hong X. ;
Jiang, Liang .
PHYSICAL REVIEW LETTERS, 2020, 124 (01)
[50]   Superconducting Microresonators: Physics and Applications [J].
Zmuidzinas, Jonas .
ANNUAL REVIEW OF CONDENSED MATTER PHYSICS, VOL 3, 2012, 3 :169-214