The Transgression Effect in the Problem of Motion of an Almost Holonomic Pendulum

被引:1
|
作者
Kuleshov, A. S. [1 ]
Ulyatovskaya, I. I. [1 ]
机构
[1] Lomonosov Moscow State Univ, Moscow 119234, Russia
基金
俄罗斯基础研究基金会;
关键词
weakly nonholonomic systems; almost holonomic pendulum; transgression;
D O I
10.1134/S1063454123040209
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In 1986, Ya.V. Tatarinov presented the basis of the theory of weakly nonholonomic systems. Mechanical systems with nonholonomic constraints depending on a small parameter are considered. It is assumed that when the value of this parameter is zero, the constraints of such a system become integrable; i.e., in this case, we have a family of holonomic systems depending on several arbitrary integration constants. We will assume that these holonomic systems are completely integrable Hamiltonian systems. When the small parameter is not zero, the behavior of such systems can be considered with the help of asymptotic methods representing their motion as a combination of the motion of a slightly modified holonomic system with slowly varying previous integration constants (the transgression effect). In this paper, we describe the transgression effect in the problem of motion of an almost holonomic pendulum.
引用
收藏
页码:594 / 597
页数:4
相关论文
共 50 条
  • [1] The Transgression Effect in the Problem of Motion of an Almost Holonomic Pendulum
    A. S. Kuleshov
    I. I. Ulyatovskaya
    Vestnik St. Petersburg University, Mathematics, 2023, 56 : 594 - 597
  • [2] Transgression Effect in the Problem of the Motion of a Rod on a Cylinder
    A. S. Kuleshov
    N. M. Vidov
    Vestnik St. Petersburg University, Mathematics, 2023, 56 : 403 - 411
  • [3] Transgression Effect in the Problem of the Motion of a Rod on a Cylinder
    Kuleshov, A. S.
    Vidov, N. M.
    VESTNIK ST PETERSBURG UNIVERSITY-MATHEMATICS, 2023, 56 (03) : 403 - 411
  • [4] PROBLEM OF GRAVIMETER PENDULUM MOTION STABILITY
    KUZIVANO.VA
    SMIRNOV, YN
    DOKLADY AKADEMII NAUK SSSR, 1974, 217 (03): : 558 - 560
  • [5] On holonomic mathematical F - pendulum
    Buslaev, Alexander P.
    Yashina, Marina V.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2016, 39 (16) : 4820 - 4828
  • [6] Periodic Motion Planning and Control for Double Rotary Pendulum via Virtual Holonomic Constraints
    Zeguo Wang
    Leonid B.Freidovich
    Honghua Zhang
    IEEE/CAAJournalofAutomaticaSinica, 2019, 6 (01) : 291 - 298
  • [7] Periodic Motion Planning and Control for Double Rotary Pendulum via Virtual Holonomic Constraints
    Wang, Zeguo
    Freidovich, Leonid B.
    Zhang, Honghua
    IEEE-CAA JOURNAL OF AUTOMATICA SINICA, 2019, 6 (01) : 291 - 298
  • [8] Transgression Effect in the Problem of the Rolling of a Ball in a Recess
    Kuleshov, A. S.
    Vidov, N. M.
    VESTNIK ST PETERSBURG UNIVERSITY-MATHEMATICS, 2024, 57 (03) : 377 - 382
  • [9] Almost periodic motion planning and control for double rotary pendulum with experimental validation
    Wang, Zeguo
    Freidovich, Leonid B.
    Zhang, Honghua
    ASIAN JOURNAL OF CONTROL, 2020, 22 (06) : 2434 - 2443
  • [10] Effect of nonlinear stiffness on the motion of a flexible pendulum
    Zaki, K
    Noah, S
    Rajagopal, KR
    Srinivasa, AR
    NONLINEAR DYNAMICS, 2002, 27 (01) : 1 - 18