Joint-Guided Distillation Binary Neural Network via Dynamic Channel-Wise Diversity Enhancement for Object Detection

被引:5
作者
Xie, Yefan [1 ,2 ]
Hou, Xuan [1 ,2 ]
Guo, Yanwei [1 ,2 ]
Wang, Xiuying [3 ]
Zheng, Jiangbin [1 ,2 ]
机构
[1] Northwestern Polytech Univ, Sch Comp Sci, Natl Engn Lab Integrated Aerosp Ground Ocean Big, Xian 710129, Shaanxi, Peoples R China
[2] Northwestern Polytech Univ, Shaanxi Prov Key Lab Speech Image Informat Proc, Xian 710129, Shaanxi, Peoples R China
[3] Univ Sydney, Sch Comp Sci, Sydney, NSW 2008, Australia
基金
中国国家自然科学基金;
关键词
Binary neural network; parameter quantization; object detection; knowledge distillation;
D O I
10.1109/TCSVT.2023.3286072
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Through truncating the weights and activations of a deep neural network, conventional binary quantization imposes limitations on the representation capability of the network parameters, which hence deteriorates the detection performance of the network. In this paper, a joint-guided distillation binary neural network via dynamic channel-wise diversity enhancement for object detection (JDBNet) is proposed to mitigate the gap of quantization errors. Our JDBNet includes a dynamic channel-wise diversity scheme and real-valued joint-guided teacher assistance to enhance the representation capability of the binary neural network in the object detection tasks. In the dynamic diversity scheme, the learning channel-wise bias (LCB) layer supports adjusting the magnitude of the parameters in which the sensitivity of the model parameters to the arbitrary quantization method is reduced, thereby improving the diversity expression ability of the feature parameters. In the joint-guided strategy, the single-precision implicit knowledge from the guiding teacher in the multilevel layer is utilized to supervise and penalize the quantitative model, enhancing the fitting performance of parameters in the binary quantized model. Extensive experiments on the PASCAL VOC, MS COCO, and VisDrone-DET datasets demonstrate that our JDBNet outperforms the state-of-the-art binary object detection networks in terms of mean Average Precision.
引用
收藏
页码:448 / 460
页数:13
相关论文
共 64 条
[1]  
Alizadeh M., 2018, An empirical study of binary neural networks' optimisation
[2]  
Bulat A, 2019, Arxiv, DOI arXiv:1909.13863
[3]   VisDrone-DET2021: The Vision Meets Drone Object detection Challenge Results [J].
Cao, Yaru ;
He, Zhijian ;
Wang, Lujia ;
Wang, Wenguan ;
Yuan, Yixuan ;
Zhang, Dingwen ;
Zhang, Jinglin ;
Zhu, Pengfei ;
Van Gool, Luc ;
Han, Junwei ;
Hoi, Steven ;
Hu, Qinghua ;
Liu, Ming ;
Cheng, Chong ;
Liu, Fanfan ;
Cao, Guojin ;
Li, Guozhen ;
Wang, Hongkai ;
He, Jianye ;
Wan, Junfeng ;
Wan, Qi ;
Zhao, Qi ;
Lyu, Shuchang ;
Zhao, Wenzhe ;
Lu, Xiaoqiang ;
Zhu, Xingkui ;
Liu, Yingjie ;
Lv, Yixuan ;
Ma, Yujing ;
Yang, Yuting ;
Wang, Zhe ;
Xu, Zhenyu ;
Luo, Zhipeng ;
Zhang, Zhimin ;
Zhang, Zhiguang ;
Li, Zihao ;
Zhang, Zixiao .
2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW 2021), 2021, :2847-2854
[4]   AQD: Towards Accurate Quantized Object Detection [J].
Chen, Peng ;
Liu, Jing ;
Zhuang, Bohan ;
Tan, Mingkui ;
Shen, Chunhua .
2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, :104-113
[5]  
Chung I, 2020, PR MACH LEARN RES, V119
[6]  
Courbariaux M, 2015, ADV NEUR IN, V28
[7]  
Denil M., 2013, P ADV NEUR INF PROC, V26, P1
[8]  
Devlin J, 2019, Arxiv, DOI [arXiv:1810.04805, 10.48550/arXiv.1810.04805, DOI 10.48550/ARXIV.1810.04805]
[9]   Regularizing Activation Distribution for Training Binarized Deep Networks [J].
Ding, Ruizhou ;
Chin, Ting-Wu ;
Liu, Zeye ;
Marculescu, Diana .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :11400-11409
[10]   Layer-Specific Optimization for Mixed Data Flow With Mixed Precision in FPGA Design for CNN-Based Object Detectors [J].
Duy Thanh Nguyen ;
Kim, Hyun ;
Lee, Hyuk-Jae .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2021, 31 (06) :2450-2464