Molecular Dynamics Simulations on Nanoscale Water Pump Driven by Asymmetric Mechanical Loads

被引:1
|
作者
Qian, Sheng [1 ]
Qiu, Lianfu [1 ]
Zhu, Youlin [1 ,2 ]
Ni, Yifeng [1 ,3 ]
Tong, Qi [1 ]
机构
[1] Fudan Univ, Dept Aeronaut & Astronaut, Shanghai 200433, Peoples R China
[2] Wuhan Univ Technol, State Key Lab Adv Technol Mat Synth & Proc, Wuhan 430070, Peoples R China
[3] Shanghai Minghua Elect Power Sci & Technol Co Ltd, Shanghai 200090, Peoples R China
关键词
water pump; carbon nanotube; mechanical actuation; buckling; molecular dynamics; WALLED CARBON NANOTUBES; TRANSPORT; PURIFICATION; FLUID;
D O I
10.1021/acsanm.3c03832
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Water transport through nanochannels has significant potential applications. In spite of the various water-pump systems reported over the past two decades, challenges remain in terms of efficiency and operability. In this study, we propose a continuous water pump with a high capacity and efficiency. The pump is driven by axial mechanical loads. Based on molecular dynamics simulations, we demonstrate that asymmetric displacements applied on the ends of the carbon nanotubes induce buckling, which transports water molecules through the nanochannel with high performance. We reveal the mechanism of transport under different loading modes by analyzing the surface morphology of the nanotube and the distributions of the axial forces during the process. Furthermore, by investigating the influences of the loading parameters, we show that the net transport rates can be tuned flexibly. The proposed water pump may inspire applications in the fabrication of next-generation nanodevices.
引用
收藏
页码:19414 / 19422
页数:9
相关论文
共 50 条
  • [21] Study of Nanoscale Wear of SiC/Al Nanocomposites Using Molecular Dynamics Simulations
    Zhihua Yin
    Pengzhe Zhu
    Baozhen Li
    Tribology Letters, 2021, 69
  • [22] Molecular dynamics simulations of thermally driven carbon nanotube oscillator
    Hwang, Ho Jung
    Lee, Jun Ha
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2006, 49 (03) : 1081 - 1086
  • [23] Study on Nanoscale Friction Behavior of TiC/Ni Composites by Molecular Dynamics Simulations
    Zheng, Min
    Qu, Dingfeng
    Zhu, Zongxiao
    Chen, Weihua
    Zhang, Zhou
    Wu, Zhuo
    Wang, Linjun
    Ma, Xuezhong
    COATINGS, 2022, 12 (08)
  • [24] Molecular Dynamics Simulations of Water Uptake into a Silica Nanopore
    Yamashita, Kyohei
    Daiguji, Hirofumi
    JOURNAL OF PHYSICAL CHEMISTRY C, 2015, 119 (06) : 3012 - 3023
  • [25] Nanoscale Structure and Dynamics of Water on Pt and Cu Surfaces from MD Simulations
    Antony, Andrew C.
    Liang, Tao
    Sinnott, Susan B.
    LANGMUIR, 2018, 34 (39) : 11905 - 11911
  • [26] Molecular dynamics simulations of freezing of water and salt solutions
    Vrbka, Lubos
    Jungwirth, Pavel
    JOURNAL OF MOLECULAR LIQUIDS, 2007, 134 (1-3) : 64 - 70
  • [27] Study of Nanoscale Wear of SiC/Al Nanocomposites Using Molecular Dynamics Simulations
    Yin, Zhihua
    Zhu, Pengzhe
    Li, Baozhen
    TRIBOLOGY LETTERS, 2021, 69 (02)
  • [28] Molecular dynamics simulations of water and ion dynamics in the electrochemical double layer
    Spohr, E
    SOLID STATE IONICS, 2002, 150 (1-2) : 1 - 12
  • [29] A Method for Detection of Water Permeation Events in Molecular Dynamics Simulations of Lipid Bilayers
    de Souza Camilo, Carlos Roberto
    Ruggiero, Jose Roberto
    de Araujo, Alexandre Suman
    BRAZILIAN JOURNAL OF PHYSICS, 2022, 52 (03)
  • [30] Mechanical characterization of nanoindented graphene via molecular dynamics simulations
    Fang, Te-Hua
    Wang, Tong Hong
    Yang, Jhih-Chin
    Hsiao, Yu-Jen
    NANOSCALE RESEARCH LETTERS, 2011, 6 : 1 - 10