Chaotic saddles and interior crises in a dissipative nontwist system

被引:8
作者
Simile Baroni, R. [1 ]
Egydio de Carvalho, R. [1 ]
Caldas, I. L. [2 ]
Viana, R. L. [2 ,3 ]
Morrison, P. J.
机构
[1] Univ Estadual Paulista UNESP, Inst Geociencias & Ciencias Exatas IGCE, Dept Estatist Matemat Aplicada & Ciencias Comp, BR-13506900 Rio Claro, SP, Brazil
[2] Univ Sao Paulo, Inst Fis, BR-05508900 Sao Paulo, SP, Brazil
[3] Univ Fed Parana UFPR, Dept Fis DF, BR-80060000 Curitiba, PR, Brazil
基金
巴西圣保罗研究基金会;
关键词
MAGNETIC-FIELD LINES; PERIODIC-ORBITS; TWIST; TRANSPORT; MAPS; ATTRACTORS; TRANSITION; DYNAMICS;
D O I
10.1103/PhysRevE.107.024216
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We consider a dissipative version of the standard nontwist map. Nontwist systems present a robust transport barrier, called the shearless curve, that becomes the shearless attractor when dissipation is introduced. This attractor can be regular or chaotic depending on the control parameters. Chaotic attractors can undergo sudden and qualitative changes as a parameter is varied. These changes are called crises, and at an interior crisis the attractor suddenly expands. Chaotic saddles are nonattracting chaotic sets that play a fundamental role in the dynamics of nonlinear systems; they are responsible for chaotic transients, fractal basin boundaries, and chaotic scattering, and they mediate interior crises. In this work we discuss the creation of chaotic saddles in a dissipative nontwist system and the interior crises they generate. We show how the presence of two saddles increases the transient times and we analyze the phenomenon of crisis induced intermittency.
引用
收藏
页数:14
相关论文
共 44 条
[1]   Fractal structures in nonlinear dynamics [J].
Aguirre, Jacobo ;
Viana, Ricardo L. ;
Sanjuan, Miguel A. F. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (01) :333-386
[2]  
Arnold V.I, 1989, Graduate Texts in Mathematics
[3]   Destruction and resurgence of the quasiperiodic shearless attractor [J].
Baroni, R. Simile ;
de Carvalho, R. Egydio .
PHYSICAL REVIEW E, 2021, 104 (01)
[4]   Geometrical Dissipation for Dynamical Systems [J].
Birtea, Petre ;
Comanescu, Dan .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2012, 316 (02) :375-394
[5]   ROUTES TO CHAOTIC SCATTERING [J].
BLEHER, S ;
OTT, E ;
GREBOGI, C .
PHYSICAL REVIEW LETTERS, 1989, 63 (09) :919-922
[6]   Nontwist symplectic maps in tokamaks [J].
Caldas, I. L. ;
Viana, R. L. ;
Szezech, J. D., Jr. ;
Portela, J. S. E. ;
Fonseca, J. ;
Roberto, M. ;
Martins, C. G. L. ;
da Silva, E. J. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2012, 17 (05) :2021-2030
[7]   A KAM theory for conformally symplectic systems: Efficient algorithms and their validation [J].
Calleja, Renato C. ;
Celletti, Alessandra ;
de la Llave, Rafael .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 255 (05) :978-1049
[8]   Twist and non-twist regimes of the oblate planet problem [J].
Celletti, Alessandra ;
Paita, Fabrizio ;
Pucacco, Giuseppe .
RENDICONTI LINCEI-MATEMATICA E APPLICAZIONI, 2017, 28 (03) :535-552
[9]   INTEGRABLE APPROXIMATION TO THE OVERLAP OF RESONANCES [J].
DECARVALHO, RE ;
DEALMEIDA, AMO .
PHYSICS LETTERS A, 1992, 162 (06) :457-463
[10]   Chaotic transport in zonal flows in analogous geophysical and plasma systems [J].
del-Castillo-Negrete, D .
PHYSICS OF PLASMAS, 2000, 7 (05) :1702-1711